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	Particulate materials include solids or liquids or a mixture of them at micrometer scales.

	These particles can be harmful to the environment and are associated with some human

	health problems, mainly due to their size. Because of this situation, technologies have been

	created for their mitigation, such as cyclones. This technology takes advantage of the kinetic

	energy of the contaminated flow movement to perform a mechanical separation, so they are

	implemented in various industrial applications such as pre-cleaners of liquids or gases. This

	research was aimed to design a high-efficiency Stairmand type cyclone for the separation

	of solid particles in a gaseous flow, with an efficiency of 80%, based on a study problem,

	where the initial parameters are known together with the variables involved in the system.

	The  methodological  process  employed  for  this  research  focused  on  a  descriptive-

	correlational  study,  following  the  following  steps:  1)  classification  of  variables  for

	theoretical   calculation,   three-dimensional   design   with   simulation   analysis,  2)

	determination of theoretical geometric parameters,   3) cyclone design and modeling in

	Solidworks® software,  4) theoretical calculation of collection efficiency,  5) collection

	efficiency analysis with Solidworks® Flow Simulation from simulation results.  Together

	with the simulation results. The theoretical results showed a coincidence with an error of

	less than 1%, demonstrating the hypothesis put forward in this research.

	 
Keywords: Vermicompost, organic waste, interactive and integrating.


	Resumen


	Los  materiales  particulados  incluyen  solidos  o  líquidos  o  una  mezcla  de  ellos  a  escalas

	micrométricas. Estas partículas, pueden ser perjudiciales para el medio ambiente y se asocia a

	algunos problemas de salud humana, debido principalmente a su tamaño. Por esta situación se

	han creado tecnologías para su mitigación, como los ciclones. Esta tecnología aprovecha la

	energía cinética del movimiento de flujo contaminado para efectuar una separación de forma

	mecánica,  por  ello  son  implementados  en  diversas  aplicaciones  industriales  como  en  los

	prelimpiadores de líquidos o gases. El objetivo de esta investigación fue diseñar un ciclón de

	alta eficiencia tipo Stairmand para separación de partículas sólidas en un flujo gaseoso, con una

	eficiencia del 80%, a partir de un problema de estudio, donde se conocen los parámetros iniciales

	junto a las variables implicadas en el sistema. El proceso metodológico empleado para esta

	investigación se centró en un estudio descriptivo-correlacional, siguiendo los siguientes pasos:

	1) clasificación de las variables para calculo teórico, diseño tridimensional con análisis de

	simulación, 2) determinación de los parámetros geométricos teóricos, 3) diseño y modelado de

	ciclón en software Solidworks®, 4) cálculo teórico de eficiencia de colección, 5) análisis de

	eficiencia de colección con Solidworks® Flow Simulation a partir de resultados de simulación.

	Los resultados teóricos, aunados a los de simulación mostraron una coincidencia con error

	inferior a 1%, demostrando la hipótesis planteada en esta investigación.

	 
Palabras clave: Diseño, validación, ciclón stairmand, filtrado parcial.
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Particulate matter (PM) is a term used to describe a mixture of solid particles or liquid droplets  present  in  the  air  (EPA,  2020).  The generation   of   PM   is   due   to   natural   or anthropogenic   sources   of   pollution,   as   a consequence  of  human  activities  (Echeverri, 2019), having serious implications in soil, air and water (Sotomayor, 2018), even in human health; mainly   related   to   cardiovascular   problems (Khaniabadi   et   al.,   2016;   Mannucci,   2017; Fiordelisi et al., 2017; An et al., 2018; Kirrane et
al., 2019; Yin et al., 2020; Hadei & Naddafi, 2020), added to respiratory (Yao et al., 2018; Sicard et al., 2019; Leikauf, Kim & Jang, 2020; Kyung & Jeong; 2020).
As  a  precautionary  measure  to  mitigate anthropogenic PM emissions, various strategies (Sofia,  2020),  domestic  technologies  (World Health	Organization,	2020),	industrial
technologies (Kwiatkowski et al., 2019), among the  latter,  cyclones,  have  been  implemented. Cyclone separators are recognized and accepted in various applications, generally of the industrial type, including steam condensate, dust collection in furnaces (Wang et al., 2019; Cao & Bian, 2019;  Wasilewski  &  Brar,  2019),  or  in  food processing, mining, and construction (Gamiño et
al., 2018; EPA-CICA, 2012). Stairmand high- efficiency	cyclones,	handle	efficient	PM
separation in aerodynamic diameters between 5 to 10 µm (Gamiño et al., 2018), with an average collection efficiency of 80%.
Due to the complex level of operation and input-output   variables,   the   performance   of cyclone designs is validated by fluid dynamic simulation   (Makwana   &   Lakdawala,   2016; Vakamalla  et  al.,  2016;  Kumar &  Jha, 2018; Gopalakrishnan  &  Arul-Prakash,  2019).  Fluid dynamic   simulation,   or   computational   fluid dynamics (CFD), is a tool to numerically solve the equations of fluid  motion using computer (Xamán & Girón, 2015). In recent work, the use of CFD tools is applied to cyclones for model optimization   analysis,   including   changes   in geometries (Luciano et al., 2018), in this context, there  are  researches  within  literature,  which focus  methods  of  validation  of  efficiency  in separation   with   cyclones,   from   theoretical calculations in conjunction with CFD.Based on the above, in this research the following  case  study  is  taken  as  a  reference: design  a  cyclone  to  separate  solids  from  a gaseous  stream.  The  particle  density  is  1500 kg/m3 and the gas is air at 450 °C. The flow rate of the stream is 3.2 m3/s, and the operation is at a pressure of 85.3 kPa. The particle concentration is 2.0 g/m3 and, according to emission standards, a  separation  efficiency  of  80%  is  required (Echeverri, 2006, p. 135). The overall objective of this research was to design a high efficiency Stairmand  type  cyclone  using  the  parameters established in (Echeverri, 2006) together with Solidworks® software, to subsequently validate the   collection   efficiency   percentage   using Solidworks® Flow Simulation analyses.

Methodology

This is a quantitative research whose scope is based on the review of literature and studies related to the field of application, specifically of a descriptive and correlational nature. The former seeks a specification of properties, added to a consideration of the study phenomenon and its components,  to  measure  concepts  and  define variables.  The  second  allows  an  association between   concepts   and   variables,   allowing predictions   and   quantifications   (Hernández- Sampieri & Mendoza-Torres, 2014).
The scope of this research is oriented to a descriptive-correlational study. The descriptive study is associated with geometric and design specifications, using theoretical methodologies, coupled with simulation methodologies. In the correlational study, it is intended to measure the degree	of	efficiency	of	the	theoretical
calculations, together with applicable equations with the values obtained by CFD.
The hypothesis of this research focuses on the  validation  of  a  Stairmand  cyclone  and  is formulated as follows: a theoretical model of a Stairmand cyclone can be validated from CFD simulation,	implementing	the	same	input
parameters in both the theoretical model and the simulated model, obtaining an-error of no more than 5% in the total PM collection.
The variables are classified through tables (see  Table  1  and  Table  2),  where  the  most relevant aspects in the theoretical calculation and design of the Stairmand type cyclone are]
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Figure 1
Dimensional  parameters  of  a  Stairmand  type cyclone
























Note.  Dimensional  representation  of  cyclone  variables prepared by the author (2021).

Equations to determine the performance of the Stairmand cyclone

The	equations	proposed	in	the
methodology   used   by   (Tahir   et   al.,   2020; Schnelle et al., 2016; Echeverri, 2006), whose variables are characterized in Table 1, were used to  calculate  the  cyclone  performance.  It  is important to note that the variables involved are input and output variables, and are related to equivalent velocity, saturation velocity, cyclone design  dimensional  parameters  and  material density, to name a few. The equations are shown below (Equations 9 to 13):
283)0.3
Tr= (ρP)(Dpi2)	(12)

ni= 1–e(2(Gr∗Tr∗Q(n+1))(0.5/(n+1)))	(13)

CFD Simulation

Solidworks® Flow Simulation is a fluid analysis tool as a complement to Solidworks® software, allowing the analysis and solution of fluid-related  problems,  based  on  the  Navier- Stokes   equations.   For   CFD   analysis   using Solidworks®	Flow	Simulation,	the
methodological development of (Matsson, 2018) is used, summarized in the diagram in Figure 2.

Figure 2
Methodology	for	CFD	simulation	in
Solidworks® Flow Simulation



























Note.  Methodological  overview  for  CFD  simulation, prepared by Matsson (2018).
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Equivalent velocity (W)	1.6064
Note.   Quantitative   specification   of   cyclone	initial
conditions prepared by the author (2021).

Tabla 4
Valores de los parámetros geométricos
Geometric parameter	Value in meters
Dc	1.35
a	0.675
b	0.27
S	0.675
Ds	0.675
h	2.025
H	5.4
z	3.375
B	0.5063
Note. Quantification of geometric parameters prepared by the author (2021).

The aerodynamic diameters of the particles present in the problem, the mass percentage, the retention time, and the percentage of collection efficiency  can  be  observed  in  Table  5,  from equations 9 to 13. Under the initial conditions, the  simulation  analysis  was  performed  with Solidworks®  Flow  Simulation  to  validate  the theoretical  results  obtained  in  Table  5.  The results obtained are shown in Figure 4.Note. Collection percentage for particles from 5 to 20 µm, prepared by the author (2021).

Figure 4.
CFD simulation of collection efficiency in the range of 10,000 particles (100%).












Note.   Simulation   analysis   for   collection   efficiency, prepared by the author (2021).
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A high efficiency cyclone was sized using the equations proposed by Maduabuchi & Kuye, 2017;  Miller,  2017;  Echeverri,  2006),  for  the conditions of a gas stream process proposed by (Echeverri, 2006), having as starting point the particle and gas density at a given temperature, in addition to the inlet flow rate, operating pressure and PM concentration.
The   sizing   data   generated   a   three- dimensional   model   in   Solidworks®   of   the Stairmand type high-efficiency cyclone.]
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[image: Subsequently,   calculations   were   made   to theoretically	determine	the	percentage
efficiency   of   the   cyclone   based   on   the equations  proposed  by  (Tahir  et  al.,  2020; Schnelle et al., 2016; Echeverri, 2006), using the   geometric   parameters   calculated,   in addition to the initial operating conditions of the system, obtaining a theoretical collection value of 79.40% in particles from 5 to 20 µm (average	aerodynamic	particle	diameter
equivalent to 12.5 µm), as shown in Table 5. With the three-dimensional model of the
Stairmand  type  high-efficiency  cyclone,  the CFD   simulation   analysis   was   performed, adding  the  same  conditions  of  the  system calculated theoretically, with the intention of validating the collection efficiency percentage, where a total of 10 thousand particles entering the cyclone was established (this value was taken as  100%), with  a  simulated retention time	of	3.668x10-4	seconds	(iteration
equivalent  to  the  theoretical  value).  In  this time,  8  thousand  particles  were  collected, releasing 2 thousand to the outside, equivalent to 80% and 20% respectively.
These data showed that for the geometric configurations  and  initial  conditions  of  the study problem, there is a minimal discrepancy (less   than   1%)   between   the   theoretical calculation versus CFD simulation results with Solidworks® Flow Simulation, corroborating the hypothesis put forward in this research, for the case study analyzed.  CFD calculations for the study of particles with Solidworks® Flow Simulation are an invaluable tool in the design of separator devices (Kurtin, 2020), since they present high accuracy in the results obtained under   the   terms   of   theoretical   models (Alahmer & Al-Dabbas, 2014; Gheorghe et al., 2018; Gopalakrishnan & Arul-Prakash, 2019).
The importance of CFD analysis in the design  and  validation  of  cyclones  makes  it possible	to	quickly	adjust	the	three-
dimensional   models,   allowing   to   predict almost automatically the behavior of the fluids inside the cyclone, and equally its collection efficiency. In this case, the design adjustments within  Solidworks®  allow  generating  new simulation  results  from  the  inlet  and  outletconditions, only by modifying the geometrical conditions.
The   behavior   of   the   flows   is   the competence of fluid mechanics, analyzed from different  perspectives  through  experimental tests with pilot plants through the operation of hydraulic pumps (Barrios, Ferrer, & Rosillón, 2020),   or   from   the   study   of   natural   or laboratory  physical  phenomena  (Cengel  & Cimbala,	2018),	which	is	why	it	is
recommended in future research, to perform experimental tests to validate the theoretical and simulated systems through CFD.
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