Potentialities of Artificial Intelligence in Higher Education: An Approach from Personalization DOI: https://doi.org/10.37843/rted.v14i1.296

Main Article Content

Parra-Sánchez, J.
CO
https://orcid.org/0000-0002-5873-3894

Abstract

There is a significant interest in knowing the educational processes and their actors in the case of research in the academic and pedagogical fields. The objective of this study was to analyze the potential of AI tools in higher education, taking into account an approach from the personalization of learning. This research was conducted under the empirical-analytical method, positivist paradigm, exploratory type, and documentary design. The population or sample considered were four databases (Scopus, Web of Science (Wos), Dialnet, and Redalyc). The technique used was a documentary observation, and the instrument used was the content sheet. The data analysis was carried out through the analysis matrix of the categories. The documents that did not answer the research questions proposed for this review were filtered with Boolean operators. In light of the results obtained, it is essential to consider the importance of contrasting pedagogical and curricular models concerning personalization. It is important to remember that a system with high technical content but little pedagogical content will deter students from using it. As a contribution to future research, it is recommended to consider the pedagogical and curricular models in the construction of personalization models. In addition, a contract should be made between the methodologies available in the literature to assess strengths and weaknesses.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Parra-Sánchez, J. S. (2022). Potentialities of Artificial Intelligence in Higher Education: An Approach from Personalization. Docentes 2.0 Journal, 14(1), 19–27. https://doi.org/10.37843/rted.v14i1.296
Section
Articles

Citaciones del Artículo



References

Abdullah, M., Bayahya, A. Y., Ba Shammakh, E. S., Altuwairqi, K. A., &

Alsaadi, A. A. (2017). A novel adaptive e-learning model matching educator-student learning styles based on machine learning. Communication, Management, and Information Technology - Proceedings of the International Conference on Communication, Management and Information Technology, ICCMIT 2016, 773–782. https://doi.org/10.1201/9781315375083-109

Aragón-García, M. (2016). Correlación inherente de los estilos del aprendizaje y las estrategias de enseñanza- aprendizaje. Revista Iberoamericana de Producción Académica y Gestión Educativa, 4, 1–16. http://pag.org.mx/index.php/PAG/article/view/586

Bouzenada, S. N. E., Zarour, N. E., & Boissier, O. (2018). An agent-based approach for personalised and adaptive learning. International Journal of Technology Enhanced Learning, 10(3), 184. https://doi.org/10.1504/ijtel.2018.10010193 DOI: https://doi.org/10.1504/IJTEL.2018.092701

Caro, M. F., Josyula, D. P., & Jiménez, J. A. (2015). Modelo pedagógico multinivel para la personalización de estrategias pedagógicas en sistemas tutoriales inteligentes. DYNA (Colombia), 82(194), 185–193. https://doi.org/10.15446/dyna.v82n194.49279 DOI: https://doi.org/10.15446/dyna.v82n194.49279

Flórez-Ochoa, R. (2000). Evaluación, pedagógica y cognición. McGraw-Hill.

Garzuzi, V. (2013). El desarrollo de estrategias de aprendizaje durante las trayectorias estudiantiles universitarias. Revista de Orientación Educacional, 27(51), 67–86. https://doi.org/10.1017/CBO9781107415324.004 DOI: https://doi.org/10.1017/CBO9781107415324.004

González, R. A., & D’Ancona, M. A. C. (1997). Metodología Cuantitativa. Estrategias y técnicas de investigación social. Reis, 80, 240. https://doi.org/10.2307/40183928 DOI: https://doi.org/10.2307/40183928

Ibáñez-Bernal, C. (2007). Un análisis crítico del modelo del triángulo pedagógico: Una propuesta alternativa. Revista Mexicana de Investigación Educativa, 12(32), 435–456. https://www.redalyc.org/pdf/140/14003220.pdf

Karagiannis, I., & Satratzemi, M. (2018). An adaptive mechanism for Moodle based on automatic detection of learning styles. Education and Information Technologies, 23(3), 1331–1357. https://doi.org/10.1007/s10639-017-9663-5 DOI: https://doi.org/10.1007/s10639-017-9663-5

Lerís-López, D., Sein-Echaluce, M., Hernández, M., & Fidalgo-Blanco, Á. (2016). Participantes heterogéneos en MOOCs y sus necesidades de aprendizaje adaptativo. Education in the Knowledge Society (EKS), 17(4), 91. https://doi.org/10.14201/eks201617491109 DOI: https://doi.org/10.14201/eks201617491109

Maraza-Quispe, B., Oviedo, O., Cisneros-Chavez, B., Cuentas-Toledo, M., Cuadros-Paz, L., Fernandez-Gambarini, W., Quispe-Flores, L., & Caytuiro-Silva, N. (2019). Model to personalize the teaching-learning process in virtual environments using case-based reasoning. ACM International Conference Proceeding Series, 105–110. https://doi.org/10.1145/3369255.3369264 DOI: https://doi.org/10.1145/3369255.3369264

Raj, N. S., & Renumol, V. G. (2021). A systematic literature review on adaptive content recommenders in personalized learning environments from 2015 to 2020. Journal of Computers in Education. https://doi.org/10.1007/s40692-021-00199-4 DOI: https://doi.org/10.1007/s40692-021-00199-4

Rincón-Flores, E. G., Mena, J., López-Camacho, E., & Olmos, O. (2019). Adaptive learning based on AI with predictive algorithms. ACM International Conference Proceeding Series, 607–612. https://doi.org/10.1145/3362789.3362869 DOI: https://doi.org/10.1145/3362789.3362869

Rivero-Albarrán, D. M., Ulloa-Erazo, N. G., Guerra, L. R. T., Arellano, B., & Arciniegas,S. M. A. (2019). Agente adaptativo para la enseñanza en ambientes inteligentes. Revista Ibérica de Sistemas e Tecnologias de Informação, (19), 694–707. https://bit.ly/3GWNevj

Rodríguez, N. (2004). Criterios para el Análisis del Diseño Curricular. Educación, Aprendizaje y Cognición. Teoría En La Práctica, 107–122. http://servicio.bc.uc.edu.ve/educacion/revista/n45/art06.pdf

Supangat, M. B. S. (2020). Development of e-learning system using felder and silverman’s index of learning styles model. International Journal of Advanced Trends in Computer Science and Engineering, 9(5), 8554–8561. https://doi.org/10.30534/ijatcse/2020/236952020 DOI: https://doi.org/10.30534/ijatcse/2020/236952020

Tetzlaff, L., Schmiedek, F., & Brod, G. (2021). Developing Personalized Education: A Dynamic Framework. Educational Psychology Review, 33(3), 863–882. https://doi.org/10.1007/s10648-020-09570-w DOI: https://doi.org/10.1007/s10648-020-09570-w

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones