Teaching and Learning of Industrial Robotics from Virtuality DOI: https://doi.org/10.37843/rted.v11i2.245

Main Article Content

Sanz-Fernández, W.
VE
https://orcid.org/0000-0001-7847-2372

Abstract

Together with the first manipulator robot, the UNIMATE from Devol and Engelberger, the concern of researchers and engineers was born to demonstrate the potential of similar robots in industrial applications. Consequently, many prestigious universities perceived how important it was to include subjects in curricula of careers such as Electrical Engineering, Electronics, Mechanics, or Mechatronics. The present investigation was under a mixed methodology. The analysis of results is supported by the response observed in a simulator through the combined use of a Toolbox for kinematic modeling of robots (based on executable scripts in an environment such as GNU Octave or similar). Of software for 3D simulation. The modeling of the use of the tools and the challenge to the student of programming virtual IRs in typical manufacturing, packaging, or palletizing scenarios, has been tested over four academic periods, obtaining positive feedback from those approved and graduates. The results achieved when simulating demonstrate the accuracy of the kinematic models obtained through mathematical formulations, which shows the usefulness of the tools described for distance learning based on practice.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Sanz-Fernández, W. (2021). Teaching and Learning of Industrial Robotics from Virtuality. Docentes 2.0 Journal, 11(2), 19–27. https://doi.org/10.37843/rted.v11i2.245
Section
Articles

Citaciones del Artículo



References

Arango, C. (2006). Exploración de la metodología Top-Down Design en sistemas CAD para el desarrollo de un modelo de ingeniería. [Trabajo de Grado, Universidad EAFIT]. Recuperado de: https://repository.eafit.edu.co/handle/10784/276

Chennakaseva, A. (2014). Difference between Denavit-Hartenberg (D-H) classical and modified conventions for Forward Kinematics of robot with case study. International Conference on Advanced Materials and manufacturing (AMMT). JNTUH College of Engineering Hyderabad.

Craig, J. (2006). Robótica (3era ed.). Prentice Hall

Denavit, J. & Hartenberg, R. (1955). A kinematic notation for Lower-pair Mechanisms based on matrices. Transactions ASME Journal of Applied Mechanics, pp. 215–221. DOI: https://doi.org/10.1115/1.4011045

Eaton, J., Bateman, D., Hauberg, S. & Wehbring, R. (2021). GNU Octave (6.2.0) [Software]. https://www.gnu.org/software/octave/download

Fu, K., González, R. & Lee, C. (1988). Robótica: Control, Detección, Visión e Inteligencia. McGraw-Hill.

González, E. (2014). La Simulación como herramienta de análisis de procesos. https://www.milenio.com/opinion/varios-autores/universidad-politecnica-de-tulancingo/la-simulacion-como-herramienta-de-analisis-de-procesos

Koehler, M., Usevitch, N.S. & Okamura, A.M. (2020). Model-Based Design of a Soft 3-D Haptic Shape Display. IEEE Transactions on Robotics 36(3), pp.613-628 DOI: https://doi.org/10.1109/TRO.2020.2980114

Mujica, R. (2019). La tecnología en la educación. Revista Tecnológica-Educativa Docentes 2.0, 4(4), 4–7. https://ojs.docentes20.com/index.php/revista-docentes20/article/view/57

Ollero, A. (2007). ROBÓTICA. Manipuladores y robots móviles. Alfaomega - Marcombo.

Pardo, F. (1997). VHDL. Lenguaje para descripción y modelación de circuitos. Universidad de Valencia

Ríos, I., Ríos, S. & Martín, J. (2000). SIMULACIÓN. Métodos aplicaciones. Alfaomega.

Salazar, R. (2015). Desarrollo de las metodologías en la modalidad de educación a distancia. https://aprenderenlasociedaddigital.blogspot.com/

Sanz, W. (2016). Cinemática de Robots Industriales: Un enfoque pedagógico para el aprendizaje de la Robótica Industrial. (3era ed.). Editorial Académica Española.

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones