Adaptive Learning Technology Models Applied to Education DOI: https://doi.org/10.37843/rted.v15i1.308
Main Article Content
Abstract
In the last ten years, several investigations have been published that propose adaptive or personalized learning models or systems based on the study of learning styles, cognitive abilities, or student interaction with learning objects. The objective of this research was to carry out a systematic review of the adaptive learning models or systems proposed during the 2012-2021 period, taking into account authors of Hispanic-American origin. For its realization, the analytical method was used, under the positivist paradigm, with a descriptive quantitative approach supported by meta-analysis and a cross-sectional experimental design. The content analysis methodology was applied based on the guidelines of the Preferred Reporting Items for Systematic reviews and Meta-Analyses declaration for the elaboration of thoughts on a sample of 50 studies selected from different scientific databases that proposed adaptive learning models or systems. Two categories of analysis were used: the object of research and the structure of the proposed approach or model. Like an analytical matrix, a bibliographic matrix was broken and organized the information collected. The results showed that most of the studies have structures based on three components, with artificial intelligence being the most used adaptability technique; likewise, a relative scarcity of studies carried out in Latin America and Spain was observed. It was concluded by mentioning the research niches on adaptive learning applied to Education and a series of suggestions regarding future work.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have publications in our journal accept the following terms:
- When a work is accepted for publication, the author retains rights of reproduction, distribution of his/her article for exploitation in all countries of the world in the format provided by our magazine and any other magnetic medium, optical, and digital.
- Authors will retain their copyright and guarantee the journal the right first to publish their work, which will be simultaneously subject to the Creative Commons Acknowledgment License (Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)). That allows third parties to copy and redistribute the material in any medium or format, under the following conditions: Acknowledgment - You must properly acknowledge authorship, provide a link to the license, and indicate if any changes have been made. You may do so in any reasonable way, but not in a way that suggests you have the licensor's endorsement or receive it for your use. NonCommercial - You may not use the material for a commercial purpose. NoDerivatives - If you remix, transform, or build from the material, you cannot broadcast the modified material. There are no additional restrictions - You cannot apply legal terms or technological measures that legally restrict you from doing what the license allows.
- Authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional archive or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives, repositories, libraries, or their website), producing exciting exchanges and increasing the published work's citations.
- Request of withdrawal an article has to be done in writing by the author to the Editor, becoming effective after a written response from the Editor. For this purpose, the author or authors will send correspondence via e-mail: [email protected].
- The author will not receive financial compensation for the publication of his work.
- All Docentes 2.0 Journal publications are under the Open Journal System (OJS) platform at: https://ojs.docentes20.com/.
References
Afini N., Shuib L., Md Nasir H.N., Bimba A., Idris N. & Balakrishnan V. (2018). Identification of personal traits in adaptive learning environment: Systematic literature review, Computers & Education. 130. 168-190 https://doi.org/10.1016/j.compedu.2018.11.005 DOI: https://doi.org/10.1016/j.compedu.2018.11.005
Ahmad, N., Tasirb, Z., Kasimc, J., & Sahata, H. (2013). Automatic Detection of Learning Styles in Learning Management Systems. Procedia - Social and Behavioral Science, 103 (2013), 181 – 189 http://doi.org/10.1016/j.sbspro.2013.10.324 DOI: https://doi.org/10.1016/j.sbspro.2013.10.324
Alvarado, Y., Beltrán, M., Escobar, M., Espinosa, J., Gamboa, F., Gamboa, C., & Martínez, L. (2013). Estado del arte sobre el concepto de trabajo cooperativo en el marco del desarrollo de habilidades de lenguaje con proyección social. [Tesis de Especialidad, Universidad de San Buenaventura]. Repositorio de la Universidad de San Buenaventura, Colombia. http://bibliotecadigital.usb.edu.co/handle/10819/3224
Arias-Gómez, J., Villasís-Keever, M., & Miranda-Novales, M. (2016). El protocolo de investigación III: la población de estudio. Alergia Mex. 63(2), 201-206 https://www.redalyc.org/pdf/4867/486755023011.pdf DOI: https://doi.org/10.29262/ram.v63i2.181
Balasubramanian, V., & Margret, S. (2018). Learning style detection based on cognitive skills to support adaptive learning environment – A reinforcement approach. Ain Shams Engineering Journal, 9, 895-907. https://doi.org/10.1016/j.asej.2016.04.012 DOI: https://doi.org/10.1016/j.asej.2016.04.012
Battou, A. (2017). Designing an Adaptive Learning System Based on a Balanced Combination of Agile Learner Design and Learner Centered Approach. American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) 37(1), 178-186 https://www.asrjetsjournal.org/index.php/American_Scientific_Journal/article/view/3519/1292
Brateanu, A. Strang, T., Garber, A., Mani, S., Spencer, A., Spevak, B., Thomascik, J., Mehta, N., & Colbert, C. (2019). Using an Adaptive, Self-Directed Web-Based Learning Module to Enhance Residents’ Medical Knowledge Prior to a New Clinical Rotation. Medical Science Educator, 29,779–786. https://doi.org/10.1007/s40670-019-00772-8 DOI: https://doi.org/10.1007/s40670-019-00772-8
Chávez, A. (2019). Uso de la tecnología en el aprendizaje adaptativo: propuesta para favorecer la resolución de problemas matemáticos en primaria. Educando para educar. 20(37) 71-89. https://beceneslp.edu.mx/ojs2/index.php/epe/article/view/50
Duque, N., Ovalle, D. & Carrillo A. (enero-abril 2020). Sistema basado en reglas para la generación personalizada de curso virtual. TecnoLógicas. http://www.redalyc.org/articulo.oa?id=344262603028
El Asame, M., Wakrim, M., & Battou, A. (2018). An Improved Competency Meta-model for Adaptive Learning Systems En M. Ben Ahmed and A. A. Boudhir (Eds.). Springer International Publishing AG 411–419, https://doi.org/10.1007/978-3-319-74500-8_38 DOI: https://doi.org/10.1007/978-3-319-74500-8_38
Fernández, L., Ramírez, J. & Blanco, A. (2017). Uso de la Adaptabilidad en el aprendizaje de la Expresión Gráfica. IV Congreso Internacional sobre Aprendizaje, Innovación y Competitividad (CINAIC 2017). 515-519. http://doi.org/10.26754/CINAIC.2017.000001_108 DOI: https://doi.org/10.26754/CINAIC.2017.000001_108
Firdausiah, A., Yusofa, N., & Hoirul, A. (2019). Personalized Learning Model based on Deep Learning Algorithm for Student Behaviour Analytic. Procedia Computer Science, 163, 125–133. http://doi.org/10.1016/j.procs.2019.12.094 DOI: https://doi.org/10.1016/j.procs.2019.12.094
Gómez, M., Galeano, C., & Jaramillo, D. (2015). El estado del arte: una metodología de investigación. Revista Colombiana de Ciencias Sociales, 6(2), 423-442. https://www.redalyc.org/pdf/4978/497856275012.pdf DOI: https://doi.org/10.21501/22161201.1469
Gonçalves, H., & García, F. (2012). Adaptive Hypermedia Knowledge Management eLearning System (AHKME) – Management and Adaptation of Learning Objects and Learning Design in a Web-Based Information System Towards the Third Generation of Web [Tesis de
Doctorado, Universidad de Salamanca]. Repositorio de GRIAL https://repositorio.grial.eu/handle/grial/186
González, J. L. (2020). Técnicas e instrumentos de investigación científica. CONCYTEC. http://repositorio.concytec.gob.pe/handle/20.500.12390/2238
González, M., Benchoff, D., Huapaya, C., & Remon, C. (2017, junio). Aprendizaje Adaptativo: Un Caso de Evaluación Personalizada. Revista Iberoamericana de Tecnología en Educación y Educación en Tecnología. 65-72. https://dialnet.unirioja.es/servlet/articulo?codigo=6068136
González, M., Becerra, J., & Olmos, J. (2018). Promoción de la autogestión a través de objetos de aprendizaje adaptativos en alumnos de educación superior. Edutec. Revista Electrónica De Tecnología Educativa, (63), 15-28 (379). https://doi.org/10.21556/edutec.2018.63.1037 DOI: https://doi.org/10.21556/edutec.2018.63.1037
Guevara, C., & Aguilar, J. (abril-junio 2019). Caracterización Semántica de Objetos de Aprendizaje Adaptativos mediante una Ontología de Tareas. Revista Ciencia e Ingeniería. 40 (2), 195-208. https://www.redalyc.org/journal/5075/507567825010/html/
Guevara, C., & Aguilar, J. (septiembre 2019). Modelo Ontológico del Estándar LOM Extendido para la Gestión de Objetos de Aprendizaje Adaptativos En Avances y retos de la ciencia e ingeniería. 315-324 https://www.researchgate.net/publication/336019607.
Hassan, M., Habiba, U., Majeed, F., & Shoaib, M. (2019): Adaptive gamification in e-learning based on students’ learning styles, Interactive Learning Environments, https://doi.org/10.1080/10494820.2019.1588745 DOI: https://doi.org/10.1080/10494820.2019.1588745
Hernández-Sampieri, R (2018). Metodología de la Investigación. Las rutas cuantitativa, cualitativa y mixta. Mc Graw-Hill
Hünicken, L., González, A., Haag, M., & Ruppel, D. (2020). Gamificación y aprendizaje adaptativo en la universidad. En M. R. De Gusti. (Ed.), Actas I Congreso Internacional de Ingeniería Aplicada a la Innovación y Educación y Asamblea General de ISTEC 2019. (pp. 198-207). Repositorio institucional de la UNLP. b
Jiménez, I., Fernández, O. E., & Almenárez, F. T. (2020). Diseño pedagógico adaptativo para el desarrollo de MOOC: una estrategia para el desarrollo de competencias en contextos corporativos. Revista Electrónica de Investigación Educativa, 22 (16), 1- 18. https://doi.org/10.24320/redie.2020.22.e16.2192 DOI: https://doi.org/10.24320/redie.2020.22.e16.2192
Kellman, P., & Krasne, S. (2018). Accelerating expertise: Perceptual and adaptive learning technology in medical learning. Medical Teacher. 40 (8), 797-802. https://doi.org/10.1080/0142159X.2018.1484897 DOI: https://doi.org/10.1080/0142159X.2018.1484897
Koch, H., de Azevedo, A., Sebastiany, M., & Cortina, A. (2020). Artificial intelligence adaptive learning tools: the teaching of English in focus. Brazilian English Language Teaching Journal. 11(2). 1-19. http://dx.doi.org/10.15448/2178-3640.2020.2.38749 DOI: https://doi.org/10.15448/2178-3640.2020.2.38749
Koshova, S. (2020). Specifics of adaptive learning in the field of public governance. Public Administration Aspects, 8(4), 107-117. https://doi.org/10.15421/152085 DOI: https://doi.org/10.15421/152085
Krechetov, I., & Romanenko, V. (2020). Implementing the Adaptive Learning Techniques. Voprosy obrazovaniya / Educational Studies Moscow, 2. 252–277. https://vo.hse.ru/data/2020/06/17/1607977770/Krechetov.pdf DOI: https://doi.org/10.17323/1814-9545-2020-2-252-277
Kuniyoshi, K., & Kurahashi, S. (2020). Simulation of learning effects of adaptive learning, Procedia Computer Science, 176, 2164-2172, https://doi.org/10.1016/j.procs.2020.09.253. DOI: https://doi.org/10.1016/j.procs.2020.09.253
Leris, D., Vea, F., & Velamazán, A. (2015). Aprendizaje adaptativo en moodle: tres casos prácticos. EKS. 16(4) 138-157 http://dx.doi.org/10.1109/FINTDI.2011.5945972 DOI: https://doi.org/10.14201/eks201516138157
Lopera, J., Ramírez, C., Zuluaga, M., & Ortiz, J. (2010). El método analítico como método natural. Nómadas. Revista Crítica de Ciencias Sociales y Jurídicas. 25 (2010.1). https://revistas.ucm.es/index.php/NOMA/article/view/NOMA1010140327A/25986
Liu, M., McKelroy, E., Corliss, S., & Carrigan, J. (2017). Investigating the effect of an adaptive learning intervention on students’ learning. Education Tech Research Dev. 65, 1605–1625. http://doi.org/10.1007/s11423-017-9542-1 DOI: https://doi.org/10.1007/s11423-017-9542-1
Lwande, C., Muchemi, L., & Oboko, R. (2021). Identifying learning styles and cognitive traits in a learning management system. Heliyon 7 (2021). https://doi.org/10.1016/j.heliyon.2021.e07701 DOI: https://doi.org/10.1016/j.heliyon.2021.e07701
May, H. (2016). Integrating learning styles and adaptive e-learning system: Current developments, problems and opportunities. Computers in Human Behavior 55 (2016). 1185-1193. http://dx.doi.org/10.1016/j.chb.2015.02.014 DOI: https://doi.org/10.1016/j.chb.2015.02.014
Mira-Giménez, M. (2017) COMALAT: aprendizaje de idiomas adaptativo y móvil. Cultura y Educación. 29 (4), 863–870, https://doi.org/10.1080/11356405.2017.1370820 DOI: https://doi.org/10.1080/11356405.2017.1370820
Otero, A., Rivera, W., Pedraza, C., & Canay, J. (2019). TIC para la educación: sistema adaptativo basado en mecanismos de aprendizaje automático para la apropiación de tecnologías en estudiantes de educación media. Telos, 21(3),526-543. https://www.redalyc.org/articulo.oa?id=99360575003 DOI: https://doi.org/10.36390/telos213.03
Otzen, T., & Manterola, C. (2017). Técnicas de muestreo sobre una población a estudio. Int. J. Morphol., 35(1), 227-232 http://www.intjmorphol.com/wp-content/uploads/2017/04/art_37_351.pdf DOI: https://doi.org/10.4067/S0717-95022017000100037
Page, M., McKenziea, J., Bossuyt, P., Boutron, I., Hoffmann, T., Mulrow, C., Shamseer, L., Tetzlaff, J., Akl, E., Brennan, S., Chou, R., Glanville, J., Grimshaw, J., Hróbjartsson, A., Lalu, M., Li, T., Lodero, E., Mayo-Wilson, E., McDonald, S., …, & Moherv. D. (2021) Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Rev Esp Cardiol. 74 (2), 790-799. https://www.revespcardiol.org/es-declaracion-prisma-2020-una-guia-articulo-S0300893221002748 DOI: https://doi.org/10.1016/j.rec.2021.07.010
Peña, N., González, C., & Mendoza, M. (septiembre-diciembre 2015). Diagnóstico de estilos de aprendizaje para favorecer la personalización de materiales educativos mediante redes bayesianas: servicios web para Moodle. Revista Virtual Universidad Católica del Norte, 46, 4-20. http://www.redalyc.org/articulo.oa?id=194242285002
Qodad, A., Seghroucheni, Y., Al Achhab, M., El Yadari, M., El Kenz, A., & Benyoussef, A. (2016). An Adaptive Learning System based on a Job Model, the Differentiated Instruction and Felder and Silverman’s Learning Styles Model. 2016 4th IEEE International Colloquium on Information Science and Technology. (pp. 506-510). IEEE. https://doi.org/10.1109/CIST.2016.7805100 DOI: https://doi.org/10.1109/CIST.2016.7805100
Ramos, C. (2015). Los paradigmas de la Investigación Científica. Av. psicol. 23(1), 9-17 http://www.unife.edu.pe/publicaciones/revistas/psicologia/2015_1/Carlos_Ramos.pdf DOI: https://doi.org/10.33539/avpsicol.2015.v23n1.167
Rasheed, F., & Wahid, A. (2021). Learning style detection in E-learning systems using machine learning techniques. Expert Systems With Applications. 174. https://doi.org/10.1016/j.eswa.2021.114774 DOI: https://doi.org/10.1016/j.eswa.2021.114774
Real-Fernández, A., Molina-Carmona, R., & Llorens-Largo, F. (2017). Aprendizaje adaptativo basado en competencias y actividades. IV Congreso Internacional sobre Aprendizaje, Innovación y Competitividad (pp. 98-103). Universidad de Zaragoza. https://doi.org/10.26754/CINAIC.2017.000001_017 DOI: https://doi.org/10.26754/CINAIC.2017.000001_017
Renn, B., Arean, P., Raue, P., Aisenberg, E., Friedman1, E., & Popovic, Z. (2020). Modernizing Training in Psychotherapy Competencies With Adaptive Learning Systems: Proof of Concept. Research on Social Work Practice. https://doi.org/10.1177%2F1049731520964854 DOI: https://doi.org/10.1177/1049731520964854
Ríos-Rodríguez, L., Román-Cao, E., & Pérez-Medinilla, Y. (enero-abril 2021). La dirección del trabajo independiente mediante el ambiente de enseñanza-aprendizaje adaptativo APA-Prolog. Revista Electrónica Educare. 25(1). 1-22. http://doi.org/10.15359/ree.25-1.11 DOI: https://doi.org/10.15359/ree.25-1.11
Roque-Alayón, Y., Sánchez-Díaz, A., & López-Padrón, A. (2015). Entorno de Aprendizaje Personalizado (PLE) para la asignatura de Investigación de Operaciones en Ingeniería Agrícola. Revista Ciencias Técnicas Agropecuarias, 25(1). https://www.redalyc.org/journal/932/93242698010
Rothman, D. (2018). Artificial Intelligence by example. Birmingham: Packt Publishing.
Sabita-ai. (2021). Everything you need to know about Machine Learning, Analytics Vidhya. https://www.analyticsvidhya.com/blog/2021/03/everything-you-need-to-know-about-machine-learning/
Salazar-Ospina, O., Rodríguez-Marín, P., Ovalle-Carranza, D., & Duque-Méndez, N. (2017, julio-septiembre). Interfaces adaptativas personalizadas para brindar recomendaciones en repositorios de objetos de aprendizaje. Tecnura, 21 (53), 107-118 DOI: https://doi.org/10.14483/udistrital.jour.tecnura.2017.3.a07 DOI: https://doi.org/10.14483/22487638.9287
Serrao-Neumann, S., Cox. M., & Low, D. (2018). Bridging Adaptive Learning and Desired Natural Resource Management Outcomes: Insights from Australian Planners. Planning Practice & Research. 34(2), 149–167. https://doi.org/10.1080/02697459.2018.1549188 DOI: https://doi.org/10.1080/02697459.2018.1549188
Sfenrianto, S., Hartarto, Y., & Akbar. H. (2018). An Adaptive Learning System based on Knowledge Level for English Learning. iJET. 13(12) https://doi.org/10.3991/ijet.v13i12.8004 DOI: https://doi.org/10.3991/ijet.v13i12.8004
Shawky, D., & Badawi, A. (2018). A Reinforcement Learning-Based Adaptive Learning System. En A. E. Hassanien et al. (Eds.): International Conference on Advanced Machine Learning Technologies and Applications, (pp. 221-231). Springer. https://doi.org/10.1007/978-3-319-74690-6_22 DOI: https://doi.org/10.1007/978-3-319-74690-6_22
Sheeba, T., & Krishnan. R. (2019). Automatic Detection of Students Learning Style in Learning Management System. Springer. 45-53. https://doi.org/10.1007/978-3-030-01659-3_7 DOI: https://doi.org/10.1007/978-3-030-01659-3_7
Sokol, V.; Bronin, S.; Karnaukh, V., & Bilov, M. (2020). Developing Adaptive Learning Management Application for Project Team in IT-Industry. Bulletin of National Technical University "KHPI". Series: System Analysis, Control and Information Technologies. 1(3), 97-105. https://doi.org/10.20998/2079-0023.2020.01.17 DOI: https://doi.org/10.20998/2079-0023.2020.01.17
Tabares, V., Duque, N., & Fabregat, R. (2020). Raim: framework para la inclusión adaptativa en entornos educativos para todos. TecnoLógicas. http://www.redalyc.org/articulo.oa?id=344262603025 DOI: https://doi.org/10.22430/22565337.1495
Troussasa, C., Krouskaa, A., & Sgouropouloub, C. (2020). Collaboration and fuzzy-modeled personalization for mobile game-based learning in higher education. Computers & Education. 144 (2020). https://doi.org/10.1016/j.compedu.2019.103698 DOI: https://doi.org/10.1016/j.compedu.2019.103698
Velandia, J. (2015). Mejoras en habilidades cognitivas con el apoyo de un recurso educativo digital adaptativa. [Tesis de Maestría, Universidad de la Sabana]. Repositorio de la Universidad de Salamanca. https://intellectum.unisabana.edu.co/handle/10818/22992
Véliz, A., Madrigal, O., & Correa, V. (2021) Aprendizaje adaptativo basado en Simuladores de Realidad Virtual. Revista Cubana de Ciencias Informáticas, 15(2) 138-157. https://www.redalyc.org/articulo.oa?id=378367420008
Wang, S., Christensen, C., & Cui, W. (2020). When adaptive learning is effective learning: comparison of an adaptive learning system to teacher-led instruction, Interactive Learning Environments, 1–11, https://doi.org/10.1080/10494820.2020.1808794 DOI: https://doi.org/10.1080/10494820.2020.1808794
Xie, H., Chu, H., Hwang, G., & Wang, Ch. (2019). Trends and development in technology-enhanced adaptive/ personalized learning: A systematic review of journal publications from 2007 to 2017. Computers and Education. 140 (2019). https://doi.org/10.1016/j.compedu.2019.103599 DOI: https://doi.org/10.1016/j.compedu.2019.103599
Yaplea, Z., & Yu, R. (2019). Fractionating adaptive learning: A meta-analysis of the reversal learning paradigm. Neuroscience and Biobehavioral Reviews, 102. 85-94. https://doi.org/10.1016/j.neubiorev.2019.04.006 DOI: https://doi.org/10.1016/j.neubiorev.2019.04.006
Yu, J., Wang, Y., Zhong, Q., Luo, G., Mao, Y., Sun, K., Feng, W., Xu, W., Cao, S., Zeng, K., Yao, Z., Hou, L., Lin, Y., Li, P., Zhou, J., Xu., B., Li, J., Tang, J., & Sun., M. (2021). MOOCCubeX: A Large Knowledge-centered Repository for Adaptive Learning in MOOCs. CIKM ’21 4643-4652 https://dl.acm.org/doi/pdf/10.1145/3459637.3482010 DOI: https://doi.org/10.1145/3459637.3482010
Zhai, X., Chu. X., Sing, C., Yung, M., Istenic, A., Spector, M., Liu, J., Yuan, J., & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity (2021). https://doi.org/10.1155/2021/8812542
Zhikharev, A., Deeney, A., Igrunova, S., Klyuchnikov. D., & Frolova, A. (2021). To the development of intelligent adaptive learning systems. Journal of Physics: Conference Series, 2060. http://doi.org/10.1088/1742-6596/2060/1/012012 DOI: https://doi.org/10.1088/1742-6596/2060/1/012012
Zulfiani, Z., Suwarna, I., & Miranto. S. (2018). Science education adaptive learning system as a computer-based science learning with learning style variations. Journal of Baltic Science Education. 17(4). 711-727 http://www.scientiasocialis.lt/jbse/?q=node/695 DOI: https://doi.org/10.33225/jbse/18.17.711