Design and Validation of a Stairmand Cyclone for Partial Filtering of Particulate Material DOI: https://doi.org/10.37843/rted.v11i1.196

Main Article Content

Montijo-Valenzuela, E.
MX
https://orcid.org/0000-0001-8538-0767

Abstract

Particulate materials include solids or liquids or a mixture of them at micrometer scales. These particles can be harmful to the environment and are associated with some human health problems, mainly due to their size. Because of this situation, technologies have been created for their mitigation, such as cyclones. This technology takes advantage of the kinetic energy of the contaminated flow movement to perform a mechanical separation, so they are implemented in various industrial applications such as pre-cleaners of liquids or gases. This research was aimed to design a high-efficiency Stairmand type cyclone for the separation of solid particles in a gaseous flow, with an efficiency of 80%, based on a study problem, where the initial parameters are known together with the variables involved in the system. The methodological process employed for this research focused on a descriptive-correlational study, following the following steps: 1) classification of variables for theoretical calculation, three-dimensional design with simulation analysis,  2) determination of theoretical geometric parameters,  3) cyclone design and modeling in Solidworks® software,  4) theoretical calculation of collection efficiency,  5) collection efficiency analysis with Solidworks® Flow Simulation from simulation results.  Together with the simulation results. The theoretical results showed a coincidence with an error of less than 1%, demonstrating the hypothesis put forward in this research. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Montijo-Valenzuela, E. E. (2021). Design and Validation of a Stairmand Cyclone for Partial Filtering of Particulate Material. Docentes 2.0 Journal, 11(1), 80–88. https://doi.org/10.37843/rted.v11i1.196
Section
Articles

Citaciones del Artículo



References

Alahmer, A., & Al-Dabbas, M. (2014). Modeling and simulation study to predict the cement portland cyclone separator performance. Emirates Journal for Engineering Research, 19(1), 19-25.

An, Z., Jin, Y., Li, J., Li, W., & Wu, W. (2018). Impact of Particulate Air Pollution on Cardiovascular Health. Current Allergy and Asthma Reports, 18(3). https://doi.org/10.1007/s11882-018-0768-8 DOI: https://doi.org/10.1007/s11882-018-0768-8

Ast Ingeniería. (2016). Simulación de sistemas fluidodinámicos mediante la aplicación del método de los volúmenes finitos. http://www.ast-ingenieria.com/capacidades-soluciones/simulacion-cfd.

Bahamón, D., Alzate, H., & Quintana, G. (2009). Simulación del patrón de flujo en fase simple para diferentes diseños de separadores ciclónicos. Revista Investigaciones Aplicadas, 6(1), 11-20.

Barrios, J., Ferrer, C., & Rosillón, K. (2020). Planta piloto de bombas hidráulicas para la enseñanza y aprendizaje de la mecánica de fluidos. Revista Tecnológica-Educativa Docentes 2.0, 9(1), 124-131. https://doi.org/10.37843/rted.v9i1.116 DOI: https://doi.org/10.37843/rted.v9i1.116

Cao, X., & Bian, J. (2019). Supersonic separation technology for natural gas processing: A review. Chemical Engineering and Processing - Process Intensification, 136, 138-151. https://doi.org/10.1016/j.cep.2019.01.007 DOI: https://doi.org/10.1016/j.cep.2019.01.007

Capote, J., Alvear, A., Abreu, O., Lázaro, M., & Espina, P. (2008). Influencia del modelo de turbulencia y del refinamiento de la discretizacion espacial en la exactitud de las simulaciones computacionales de incendios. Rev. Int. Met. Núm. Calc. Dis. Ing. 24,227-245.

Cengel, Y., & Cimbala, J. (2018). Mecánica de fluidos: fundamentos y aplicaciones (4a ed.). McGraw-Hill/Interamericana Editores, S.A. de C.V.

Echeverri, C. (2006). Diseño óptimo de ciclones. Revista Ingenierías Universidad De Medellín, 5(9), 123-139.

Echeverri, C. (2019). Contaminación atmosférica (20a ed., p. 86). Ediciones de la U.

EPA (2020). Particulate Matter (PM) Basics. US EPA. https://www.epa.gov/pm-pollution/particulate-matter-pm-basics.

EPA-CICA (2012). Hoja de Datos. EPA. https://www3.epa.gov/ttncatc1/dir1/fcyclons.pdf

Eslava, J. (2016). Reflexiones acerca de la relación ambiente y saludables (1a ed., p. 103). Universidad Nacional de Colombia.

Fiordelisi, A., Piscitelli, P., Trimarco, B., Coscioni, E., Iaccarino, G., & Sorriento, D. (2017). The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Failure Reviews, 22(3), 337-347. https://doi.org/10.1007/s10741-017-9606-7 DOI: https://doi.org/10.1007/s10741-017-9606-7

Gamiño, M., Castillo, F., Vázquez, R., Díaz, C., Guzmán, A., & Herrera, F. (2018). Análisis del efecto geométrico de ciclones en el secado por aspersión de leche usando CFD. Avances en Ciencias e Ingeniería, 9, 11- 23.

Gheorghe, G., Mateescu, M., Persu, C., & Gageanu, I. (2018). Theoretical simulation of air circulation inside cyclone mounted at exhaust outlet of pneumatic seed drill to optimize it. Engineering for Rural Development, 813-817. https://doi.org/10.22616/erdev2018.17.n047 DOI: https://doi.org/10.22616/ERDev2018.17.N047

Gopalakrishnan, B., & Arul-Prakash, K. (2019). Numerical study on pressure drops and filtration efficiency of gas–solid flow through axial cyclone separators. International Journal of Advances in Engineering Sciences and Applied Mathematics, 11(4), 280-287. https://doi.org/10.1007/s12572-020-00259-5 DOI: https://doi.org/10.1007/s12572-020-00259-5

Hadei, M., & Naddafi, K. (2020). Cardiovascular effects of airborne particulate matter: A review of rodent model studies. Chemosphere, 242, 125204. https://doi.org/10.1016/j.chemosphere.2019.125204 DOI: https://doi.org/10.1016/j.chemosphere.2019.125204

Herna?ndez-Sampieri, R., & Mendoza-Torres, C. (2014). Metodologi?a de la investigacio?n (6th ed., p. 89). McGraw-Hill / Interamericana Editores, S.A. DE C.V.

Hoffmann, A., Stein, L., & Bradshaw, P. (2008). Gas Cyclones and Swirl Tubes: Principles, Design and Operation. Applied Mechanics Reviews, 56(2), 28-29. DOI: https://doi.org/10.1115/1.1553446

Khaniabadi, Y., Goudarzi, G., Daryanoosh, S., Borgini, A., Tittarelli, A., & De Marco, A. (2016). Exposure to PM10, NO2, and O3 and impacts on human health. Environmental Science and Pollution Research, 24(3), 2781-2789. https://doi.org/10.1007/s11356-016-8038-6. DOI: https://doi.org/10.1007/s11356-016-8038-6

Kirrane, E., Luben, T., Benson, A., Owens, E., Sacks, J., & Dutton, S. (2019). A systematic review of cardiovascular responses associated with ambient black carbon and fine particulate matter. Environment International, 127, 305-316. https://doi.org/10.1016/j.envint.2019.02.0277.

Kumar, V., & Jha, K. (2018). Numerical investigations of the cone-shaped vortex finders on the performance of cyclone separators. Journal of

Mechanical Science and Technology, 32(11), 5293-5303. https://doi.org/10.1007/s12206-018-1028-5 DOI: https://doi.org/10.1007/s12206-018-1028-5

Kurtin, K. (2020). Particle Separation using SOLIDWORKS Flow Simulation - Computer Aided Technology. Cati.com. Revisado el 28 octubre 2020, en https://www.cati.com/blog/2020/04/particle-separation-using-solidworks-flow-simulation/.

Kwiatkowski, S., Polat, M., Yu, W., & Johnson, M. (2019). Industrial Emissions Control Technologies: Introduction. Encyclopedia of Sustainability Science and Technology, 1-35. https://doi.org/10.1007/978-1-4939-2493-6_1083-1 DOI: https://doi.org/10.1007/978-1-4939-2493-6_1083-1

Kyung, S., & Jeong, S. (2020). Particulate-Matter Related Respiratory Diseases. Tuberculosis and Respiratory Diseases, 83(2), 116. https://doi.org/10.4046/trd.2019.0025 DOI: https://doi.org/10.4046/trd.2019.0025

Leikauf, G., Kim, S., & Jang, A. (2020). Mechanisms of ultrafine particle-induced respiratory health effects. Experimental & Molecular Medicine, 52(3), 329-337. https://doi.org/10.1038/s12276-020-0394-0. DOI: https://doi.org/10.1038/s12276-020-0394-0

Lucas, D. (2016). Qualification of CFD-models for multiphase flows. Kerntechnik, 81(2), 167-169. https://doi.org/10.3139/124.110686 DOI: https://doi.org/10.3139/124.110686

Luciano, R., Silva, B., Rosa, L., & Meier, H. (2018). Multi-objective optimization of cyclone separators in series based on computational fluid dynamics. Powder Technology, 325, pp.452-466. DOI: https://doi.org/10.1016/j.powtec.2017.11.043

Maduabuchi, F., & Kuye, A. (2017). Optimization of Cyclone Design Parameters using Java in Netbeans Integrated Development Environment (IDE) Programme. Journal of Scientific and Engineering Research, 4(8), 221-230.

Makwana, P., & Lakdawala, A. (2016). CFD Analysis of Particle Laden Flow in a Cyclone Separator Using RANS and LES Methodologies. Fluid Mechanics and Fluid Power – Contemporary Research, 669-678. https://doi.org/10.1007/978-81-322-2743-4_64 DOI: https://doi.org/10.1007/978-81-322-2743-4_64

Mannucci, P. (2017). Air pollution levels and cardiovascular health: Low is not enough. European Journal of Preventive Cardiology, 24(17), 1851-1853. https://doi.org/10.1177/2047487317719356 DOI: https://doi.org/10.1177/2047487317719356

Matsson, J. (2018). An Introduction to SOLIDWORKS Flow Simulation 2018 (1a ed., p. 1). SDC Publications.

Miller, B. (2017). Introduction to Coal Utilization Technologies (2a ed., pp. 147-229). Elsevier.

Petit, A., Pico, H., & Barbosa, M. (2012). Influence of the cyclone cone length on flow variables. Avances En Ciencias E Ingeniería, 3(3), 103-118.

Petit, A., & Barbosa, M. (2013). Simulación de flujo turbulento dentro de un separador tipo ciclón usando Large Eddy Simulation. Asociación Argentina De Mecánica Computacional, 1(1).

Schnelle, K., Dunn, R., & Ternes, M. (2016). Air pollution control technology handbook (2a ed., pp. 334-335). Taylor & Francis.

Sicard, P., Khaniabadi, Y., Perez, S., Gualtieri, M., & De Marco, A. (2019). Effect of O3, PM10 and PM2.5 on cardiovascular and respiratory diseases in cities of France, Iran, and Italy. Environmental Science and Pollution Research, 26(31), 32645-32665. https://doi.org/10.1007/s11356-019-06445-8 DOI: https://doi.org/10.1007/s11356-019-06445-8

Sofia, D., Gioiella, F., Lotrecchiano, N., & Giuliano, A. (2020). Mitigation strategies for reducing air pollution. Environmental Science and Pollution Research, 27(16), 19226-19235. https://doi.org/10.1007/s11356-020-08647-x DOI: https://doi.org/10.1007/s11356-020-08647-x

Sotomayor, A. (2018). Tecnologías limpias (1a ed.). Universidad de Lima, Fondo Editorial.

Tahir, M., Mursalim, M., Salengke, S., & Metusalach, M. (2020). Design and performance of a cyclone separator integrated with heat exchanger for smoked fish production. ARPN Journal of Engineering and Applied Sciences, 12(19), 5398.

Vakamalla, T., Vadlakonda, B., Aketi, V., & Mangadoddy, N. (2016). Multiphase CFD Modelling of Mineral Separators Performance: Validation Against Tomography Data. Transactions of The Indian Institute of Metals, 70(2), 323-340. https://doi.org/10.1007/s12666-016-0995-4. DOI: https://doi.org/10.1007/s12666-016-0995-4

Virto, L. (2017). Dina?mica de gases (1a ed., p. 111). UPCGRAU.

Wang, S., Li, H., Wang, R., Wang, X., Tian, R., & Sun, Q. (2019). Effect of the inlet angle on the performance of a cyclone separator using CFD-DEM. Advanced Powder Technology, 30(2), 227-239. https://doi.org/10.1016/j.apt.2018.10.027 DOI: https://doi.org/10.1016/j.apt.2018.10.027

Wasilewski, M., & Brar, L. (2019). Effect of the inlet duct angle on the performance of cyclone separators. Separation and Purification Technology, 213, 19-33. https://doi.org/10.1016/j.seppur.2018.12.023 DOI: https://doi.org/10.1016/j.seppur.2018.12.023

Witt, P., Mittoni, L., Wu, J., & Shepherd, I. (1999). Validation of a CFD model for predicting gas flow in a cyclone. Proceedings of CHEMECA99. http://hdl.handle.net/102.100.100/215218?index=1.

World Health Organization. (2020). Technology and design-based interventions. https://www.who.int/airpollution/household/interventions/technology/en/.

Xamán, J., & Girón, M. (2015). Dinámica De Fluidos Computacional Para Ingenieros (1a ed.). Palibrio.

Yin, P., Guo, J., Wang, L., Fan, W., Lu, F., & Guo, M. (2020). Higher Risk of Cardiovascular Disease Associated with Smaller Size-Fractioned Particulate Matter. Environmental Science & Technology Letters, 7(2), 95-101. https://doi.org/10.1021/acs.estlett.9b00735 DOI: https://doi.org/10.1021/acs.estlett.9b00735

Yao, Z., You, S., Dai, Y., & Wang, C. (2018). Particulate emission from the gasification and pyrolysis of biomass: Concentration, size distributions, respiratory deposition-based control measure evaluation. Environmental Pollution, 242, 1108-1118. https://doi.org/10.1016/j.envpol.2018.07.126 DOI: https://doi.org/10.1016/j.envpol.2018.07.126

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones