Personalized Learning: A Techno-Educational Strategy for High School Computer Science Students DOI: https://doi.org/10.37843/rted.v11i2.249

Main Article Content

Rivera-Arzola, E.
MX
https://orcid.org/0000-0002-3935-5939

Abstract

In the learning environments of educational institutions, transformations are being generated to offer more flexible and valuable learning with a practical application. In the teaching-learning process, there must be the student's active involvement. A strategy to achieve this can be personalized learning, which seeks a more coarse adjustment of the courses to the students' individual needs. That is why the proposal arises to make use of personalized learning through an Adaptive System to identify its impact on improving students' academic performance in computing at a higher-level educational institution. To carry it out, a quantitative approach of an experimental type has been considered with a test group plus a control group; the data analysis is based on inferential statistics. This proposal was made with a sample of 30 participants; for its collection, the following instruments are considered: learning style tests, standardized instruments, learning strategies tests, diagnostic evaluation, final evaluation, and student satisfaction questionnaire. In addition, to improve the students' academic performance, generating a reference guide of good practices and a dissemination program for this type of learning. Therefore, the implementation of educational methods such as personalized learning through adaptive systems reflects a positive impact on students' academic performance.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Rivera-Arzola, E. Z. (2021). Personalized Learning: A Techno-Educational Strategy for High School Computer Science Students. Docentes 2.0 Journal, 11(2), 40–47. https://doi.org/10.37843/rted.v11i2.249
Section
Articles

Citaciones del Artículo



References

Adragna, S. (2019). A Review of Tapping into the Power of Personalized Learning. Internet Learning Journal, 7(1), 67-70. https://elearningindustry.com/free-ebooks/power-of-personalized-learning-tapping-into DOI: https://doi.org/10.18278/il.7.1.7

Alzina, R. B. (2004). Metodología de la investigación educativa (Vol. 1). La Muralla.

Benyon, D.R., Innocent, P.R. & Murray, D.M. (1987). System adaptivity and the modelling of stereotypes. En H. Bullinger & B. Shackel (Eds.), Human-Computer Interaction-INTERACT ’87 (pp. 245-253). Elsevier Science Publishers. https://doi.org/10.1016/B978-0-444-70304-0.50047-9 DOI: https://doi.org/10.1016/B978-0-444-70304-0.50047-9

Brown, M., McCormack, M., Reeves, J., Brook, D. C., Grajek, S., Bali, M., Bulger, S., Dark, S., Engelbert, N., Gannon, K., Gauthier, A., Gibson, D., Gibson, R., Lundin, B., Veletsianos, G. & Weber, N. (2020). 2020 Educase Horizon Report, Teaching and Learning Edition. https://library.educause.edu/-/media/files/library/2020/3/2020_horizon_report_pdf.pdf?la=en&hash=08A92C17998E8113BCB15DCA7BA1F467F303BA80

Carbonell, J. R. (1970). AI in CAI: An artificial intelligence approach to computer aided instruction. IEEE Transactions on Man-Machine Systems. Man Machine System, 11(4), 190– 202. DOI: https://doi.org/10.1109/TMMS.1970.299942

Chadwick, C. (1979). Teorías del aprendizaje. Tecla.

Chieu, V. M. (2005). Constructivist learning: An operational approach for designing adaptive learning environments supporting cognitive flexibility [The Unpublished doctoral dissertation, Université catholique de Louvain].

Creswell, J. W. (2014). Research Design: Qualitative and Quantitative Approaches. SAGE.

Field, A. (2009). Discovering Statistics using SPSS. SAGE.

Flores-Ruíz, E., Miranda-Novales, M. G. & Villasís-Keever, M. Á. (2017). El protocolo de investigación VI: cómo elegir la prueba estadística adecuada. Estadística inferencial. Revista Alergia México, 64(3), 364-370. https://doi.org/10.29262/ram.v64i3.304 DOI: https://doi.org/10.29262/ram.v64i3.304

Gantier-Aliaga, S. F. (2021). Estrategias de Evaluación de Competencias en el Rendimiento Académico de Estudiantes Universitarios de Psicología. Revista Tecnológica-Educativa Docentes 2.0, 11(1), 5–10. https://doi.org/10.37843/rted.v11i1.141 DOI: https://doi.org/10.37843/rted.v11i1.141

Huang, R., Spector, J. M. & Yang, J. (2019). Introduction to Educational Technology. En Educational Technology (pp. 3-31). Springer. https://doi.org/10.1007/978-981-13-6643-7_1 DOI: https://doi.org/10.1007/978-981-13-6643-7_1

ITESM. (2014). Edu Trends: Aprendizaje y evaluación adaptativos. https://observatorio.tec.mx/edutrendsaprendizajeadaptativo

Lamas, H. A. (2015). Sobre el rendimiento escolar. Propósitos y Representaciones, 3(1), 313–350. https://doi.org/10.20511/pyr2015.v3n1.74 DOI: https://doi.org/10.20511/pyr2015.v3n1.74

Lerís-López, D., Vea-Muniesa, F. & Velamazán-Gimeno, Á. (2015). Aprendizaje adaptativo en Moodle: tres casos prácticos. Education in the Knowledge Society (EKS), 16(4), 138-157. https://doi.org/10.14201/eks201516138157 DOI: https://doi.org/10.14201/eks201516138157

Novaez, M. (1986). Psicología de la actividad escolar. Iberoamericana.

OIE-Unesco. (2017). Herramientas de formación para el Desarrollo Curricular: Aprendizaje Personalizado. http://www.ibe.unesco.org/es

Ramos, C. A. (2015). Los paradigmas de la investigación científica. Avances en Psicología, 23(1), 9–17. https://doi.org/10.33539/avpsicol.2015.v23n1.167 DOI: https://doi.org/10.33539/avpsicol.2015.v23n1.167

Sánchez, F. A. (2019). Fundamentos Epistémicos de la Investigación Cualitativa y Cuantitativa: Consensos y Disensos. Revista Digital de Investigación en Docencia Universitaria, 13(1), 102–122. http://www.scielo.org.pe/pdf/ridu/v13n1/a08v13n1.pdf DOI: https://doi.org/10.19083/ridu.2019.644

Shute, V. J. y Zapata-Rivera, D. (2012). Adaptive Educational Systems. En P. J. Durlach y A.M. Lesgold (Eds.), Adaptive Technologies for Training and Education (pp. 7-27). Cambridge University Press. https://doi.org/10.1017/CBO9781139049580.004 DOI: https://doi.org/10.1017/CBO9781139049580.004

Tamayo, M. (2009). El proceso de la investigación científica. Limusa.

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones