Importance of Knowing the Normality of the Data Used in Research Work by Thesis Students DOI: https://doi.org/10.37843/rted.v17i2.554
Main Article Content
Abstract
Knowing the normality of data in research papers is essential in choosing the appropriate methods to analyze them and obtain valid and reliable conclusions. The research objective was to know the importance of the normality test in research papers as a previous protocol to choose the statistical test to contrast the hypothesis. The research was based on the hypothetical-deductive method, positivist paradigm, with a quantitative approach, non-experimental design, and descriptive type, with a population and sample of 10 recent investigations that address the statistical normality of the data as the main theme. The techniques and instruments used in this research include bibliographic review and content analysis. The results reveal that using numerical and graphic methods allows a more complete evaluation of the normality of the data. Both approaches are advisable to understand the data distribution better and make informed decisions. The main discussion is that sample sizes under 50 should use the Shapiro-Wilk test. In conclusion, the normality test is important in choosing the statistical procedure for testing hypotheses in a research paper, which influences the results' validity.
Downloads
Metrics
Article Details
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have publications in our journal accept the following terms:
- When a work is accepted for publication, the author retains rights of reproduction, distribution of his/her article for exploitation in all countries of the world in the format provided by our magazine and any other magnetic medium, optical, and digital.
- Authors will retain their copyright and guarantee the journal the right first to publish their work, which will be simultaneously subject to the Creative Commons Acknowledgment License (Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)). That allows third parties to copy and redistribute the material in any medium or format, under the following conditions: Acknowledgment - You must properly acknowledge authorship, provide a link to the license, and indicate if any changes have been made. You may do so in any reasonable way, but not in a way that suggests you have the licensor's endorsement or receive it for your use. NonCommercial - You may not use the material for a commercial purpose. NoDerivatives - If you remix, transform, or build from the material, you cannot broadcast the modified material. There are no additional restrictions - You cannot apply legal terms or technological measures that legally restrict you from doing what the license allows.
- Authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional archive or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives, repositories, libraries, or their website), producing exciting exchanges and increasing the published work's citations.
- Request of withdrawal an article has to be done in writing by the author to the Editor, becoming effective after a written response from the Editor. For this purpose, the author or authors will send correspondence via e-mail: [email protected].
- The author will not receive financial compensation for the publication of his work.
- All Docentes 2.0 Journal publications are under the Open Journal System (OJS) platform at: https://ojs.docentes20.com/.
References
Bardin, L. (2002). Análisis de contenido (Tercera edición). Ediciones AKAL S.A.
Barrantes, R. (2002). Investigación: Un camino al conocimiento, Un enfoque Cualitativo, cuantitativo y mixto. (Sexta reimpresión). Editorial EUNED.
Barrios Palacios, Y. D., Guerrero Ávila, Z. E., Zambrano Miranda, D. F., & Ponce Solórzano, H. X. (2022). Análisis estadístico cuando no se cumplen los supuestos de las pruebas paramétricas, en el contexto de la investigación de la Cultura Física. Universidad y Sociedad, 14(S1), 591-600. https://n9.cl/d9git
Cabrera, G., Zanazzi, J. F., Zanazzi, J. L., & Boaglio, L. (2017). Comparación de potencias en pruebas estadísticas de normalidad, con datos escasos. Revista de la Facultad de Ciencias Exactas, Físicas y Naturales, 4(2), 47. https://n9.cl/7pmpe
Dagnino, J. (2015). La distribución normal. Revista Chilena de Anestesia. https://n9.cl/o5g1w
Durkheim, E. (2001). Las reglas del método sociológico (Segunda reimpresión). Fondo de cultura económica México.
Espinoza Freire, E. E. (2018). La hipótesis en la investigación. Mendive. Revista de Educación, 16(1), 122-139. https://n9.cl/dmzaf
Flores Muñoz, P., Muñoz Escobar, L., & Sánchez Acalo, T. (2019). Estudio de potencia de pruebas de normalidad usando distribuciones desconocidas con distintos niveles de no normalidad. Perfiles, 1(21), 4-11. https://doi.org/10.47187/perf.v1i21.42 DOI: https://doi.org/10.47187/perf.v1i21.42
Flores Tapia, C. E., & Flores Cevallos, K. L. (2021). Pruebas para comprobar la normalidad de datos en procesos productivos: Anderson-Darling, Ryan-Joiner, Shapiro-Wilk y Kolmogórov-Smirnov. Societas, 23(2), 86-106. https://n9.cl/617bz
Flores-Ruiz, E., Miranda-Novales, M. G., & Villasís-Keever, M. Á. (2017). El protocolo de investigación VI: Cómo elegir la prueba estadística adecuada. Estadística inferencial. Revista Alergia México, 64(3), 364-370. https://doi.org/10.29262/ram.v64i3.304 DOI: https://doi.org/10.29262/ram.v64i3.304
Hernández González, O. (2021). Aproximación a los distintos tipos de muestreo no probabilístico que existen [Carta al editor]. https://n9.cl/vdhpb
Luzuriaga Jaramillo, H. A., Espinosa Pinos, C. A., Haro Sarango, A. F., & Ortiz Román, H. D. (2023). Histograma y distribución normal: Shapiro-Wilk y Kolmogorov Smirnov aplicado en SPSS: Histogram and normal distribution: Shapiro-Wilk and Kolmogorov Smirnov applied in SPSS. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 4(4), 596-607. https://doi.org/10.56712/latam.v4i4.1242 DOI: https://doi.org/10.56712/latam.v4i4.1242
Platas García, V. (2021). Contrastes de normalidad [Bachelor thesis]. https://n9.cl/qxhie
Popper, K. (1991). Conjeturas y refutaciones (Tercera reimpresión). Ediciones PAIDOS.
Roco-Videla, Á., Landabur-Ayala, R., Maureira-Carsalade, N., & Olguin-Barraza, M. (2023). ¿Cómo determinar efectivamente si una serie de datos sigue una distribución normal cuando el tamaño muestral es pequeño? Nutrición Hospitalaria, 40(1), 234-235. https://doi.org/10.20960/nh.04519 DOI: https://doi.org/10.20960/nh.04519
Sánchez Espejo, F. G. (2022). El instrumento y su estadística en una tesis (Primera edición). Centrum legalis EIRL.
Villavicencio-Caparó, E., Lima-Illescas, M., Cuenca-León, K., Patiño-Ramón, E., & Pacheco-Quito, E. (2023). ¿Cómo escoger la prueba estadística? Manejo de datos parte 2. Odontología Activa Revista Científica, 8(2), 53-66. https://doi.org/10.31984/oactiva.v8i2.885 DOI: https://doi.org/10.31984/oactiva.v8i2.885