The Impact of Artificial Intelligence on Teacher Training DOI: https://doi.org/10.37843/rted.v17i2.566

Main Article Content

Rondon Morel, R. O.
PE
https://orcid.org/0000-0003-3814-8054
Pacotaipe-Delacruz, R.
PE
https://orcid.org/0000-0002-3118-6165
Alarcón-Nuñez, E. A.
PE
Yepez-Salvatierra, P. N.
PE
https://orcid.org/0000-0001-8495-428X

Abstract

Artificial intelligence (AI) is advancing rapidly; based on the connectivity theory, a computer designed to interact with humanity solves certain tasks. The objective of the research was to analyze the impact of the application of artificial intelligence in teacher training. The research was framed in the cognitive paradigm, with a qualitative approach and a narrative design, through a documentary review and the PRISMA method. A search was conducted in various databases, and 11 relevant articles were selected. The results indicate that AI has the potential to improve teacher training by offering innovative tools and efficient pedagogical methods. Key dimensions such as cognitive, sensorimotor, emotional, and ethical demonstrate how AI facilitates autonomous learning, improves technical skills, and fosters interpersonal skills. However, limitations were evident, such as headteacher training's need for more training and resistance to new technologies. The study suggests that AI can enrich teacher training and improve educational quality, but current barriers must be addressed to maximize its impact. Furthermore, it is recommended to investigate how AI influences teacher training and to consider greater geographical diversity in future studies.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Rondon-Morel, R. O., Pacotaipe-Delacruz, R., Alarcón-Nuñez, E. A., & Yepez-Salvatierra, P. N. (2024). The Impact of Artificial Intelligence on Teacher Training. Docentes 2.0 Journal, 17(2), 368–375. https://doi.org/10.37843/rted.v17i2.566
Section
Articles

Citaciones del Artículo



References

çAcosta Faneite, S. F. (2023). Los enfoques de investigación en las Ciencias Sociales. Revista Latinoamericana Ogmios, 3(8), 82–95. https://doi.org/10.53595/rlo.v3.i8.084 DOI: https://doi.org/10.53595/rlo.v3.i8.084

Adviser. (2021). Dramatized video-based problem-based learning (DVPL) in undergraduate medicine: An account of experience.

Del Campo, G., Villota, W., Andrade, E., Montero, Y. (2023). Análisis bibliométrico sobre estudios de la neurociencia, la inteligencia artificial y la robótica: énfasis en las tecnologías disruptivas en educación. Salud Ciencia y Tecnologia, 3(362). https:// doi.org/10.56294/saludcyt2023362

Hernández-Sampieri, R., Fernández-Collado, C., & Baptista-Lucio, P. (2014). Metodología de la investigación (6ta ed.). McGraw-Hill.

Hwang, G. J., & Chang, C. Y. (2023). A review of opportunities and challenges of chatbots in education. Interactive Learning Environments, 31(7), pp. 4099-4112. https:// doi.org/10.1080/10494820.2021.1952615 DOI: https://doi.org/10.1080/10494820.2021.1952615

Karsenti, T. (2019). Artificial intelligence in education: The urgent need to prepare teachers for tomorrow’s schools. Formation et Profession, 27(1), pp. 112 - 116. 10.18162/fp2019.a167 DOI: https://doi.org/10.18162/fp.2019.a166

Kinsner, W. (2023). Towards human security through personalized trans-disciplinary evolving symbiotic education based on cognitive digital twins. Cadmus, 5(2), 38-73. https://n9.cl/ho038

Mattar, J. (2018). Constructivism and connectivism in education technology: active, situated, authentic, experiential, and anchored learning. RIED - Revista Iberoamericana de Educación a Distancia, 21 (2), 201-217. http://dx.doi.org/10.5944/ried.21.2.20055] DOI: https://doi.org/10.5944/ried.21.2.20055

Mejía-Rivas, J. (2022). Los paradigmas en la investigación científica. Revista Ciencia Agraria, 1(3), 7-14. https://doi.org/10.35622/j.rca.2022.03.001 DOI: https://doi.org/10.35622/j.rca.2022.03.001

Owoc, M.L., Sawicka, A. & Weichbroth, P. (2021). Artificial Intelligence Technologies in Education: Benefits, Challenges and Strategies of Implementation. Springer International Publishing, pp. 37 - 58. https:// doi.org/10.1007/978-3-030-85001-2_4 DOI: https://doi.org/10.1007/978-3-030-85001-2_4

Page, M. J., Moher, D., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & McKenzie, J. E. (2021). PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. bmj, 372. https://doi.org/10.1136/bmj.n160 (BMJ) (BMJ DOI: https://doi.org/10.1136/bmj.n160

S?m?rescu, N., Bumbac, R., Zamfiroiu, A., & Iorgulescu, M. C. (2024). Artificial intelligence in education: Next-gen teacher perspectives. Amfiteatru Econ. J, 26. 145-161. https:// doi.org/10.24818/EA/2024/65/145 DOI: https://doi.org/10.24818/EA/2024/65/145

Tunjera, N. &. (2023). Investigating effective ways to use artificial intelligence in teacher education. Kidmore End: Academic Conferences International Limited. DOI: https://doi.org/10.34190/ecel.22.1.1625

Villasis, et al. (2020). Uso de revisiones sistemáticas y metaanálisis en la medicina basada en evidencia.

Wu, W., Burdina, G. & Gura, A. (2023). Use of artificial intelligence in teacher training. International. Journal of Web-Based Learning and Teaching Technologies, 18(1), pp. 1 - 15. https:// doi.org/10.4018/IJWLTT.331692 DOI: https://doi.org/10.4018/IJWLTT.331692

Yang, S., Ogata, H., Matsui, T. & Chen, N. (2021). Human-centered artificial intelligence in education: Seeing the invisible through the visible. Computers and Education: Artificial Intelligence, 2(100008). 10.1016/i.caeai.2021.100008 DOI: https://doi.org/10.1016/j.caeai.2021.100008

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones