AI Prompts: Tools for Optimizing Scientific Research
DOI:
https://doi.org/10.37843/rted.v18i1.616
Main Article Content
Abstract
En la última década, la Inteligencia Artificial (IA) ha emergido como un agente transformador en la producción de conocimiento científico, incidiendo de manera transversal en múltiples disciplinas. La investigación tuvo como propósito analizar el impacto de los prompts basados en IA en la optimización del procesamiento y estructuración de datos. Se adoptó un enfoque cualitativo, sustentado en el paradigma interpretativo y método hermenéutico, con un diseño descriptivo de corte transversal. La muestra representativa estuvo conformada por 25 investigadores académicos. Para la recopilación de información, se emplearon entrevistas semiestructuradas, cuyo análisis se efectuó mediante codificación abierta y el uso del software NVivo, permitiendo la identificación de patrones emergentes y tendencias significativas. Los resultados evidencian que los prompts de IA no solo incrementan la eficiencia en la gestión de datos, sino que también favorecen la identificación de nuevas líneas de indagación científica. Además, se observó una notable reducción en los tiempos de procesamiento y un incremento en la precisión del análisis de grandes volúmenes de información. En consecuencia, las herramientas se consolidan como recursos notables para la investigación contemporánea, particularmente en contextos donde el manejo de datos masivos y la optimización de metodologías comparativas resultan determinantes. Se recomienda su incorporación en todas las fases del proceso de generación de conocimiento y se sugiere establecer marcos éticos y normativos que regulen el uso de la IA en la investigación, promoviendo su integración como una herramienta complementaria y no como un sustituto del razonamiento humano en la construcción del conocimiento científico.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have publications in our journal accept the following terms:
- When a work is accepted for publication, the author retains rights of reproduction, distribution of his/her article for exploitation in all countries of the world in the format provided by our magazine and any other magnetic medium, optical, and digital.
- Authors will retain their copyright and guarantee the journal the right first to publish their work, which will be simultaneously subject to the Creative Commons Acknowledgment License (Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)). That allows third parties to copy and redistribute the material in any medium or format, under the following conditions: Acknowledgment - You must properly acknowledge authorship, provide a link to the license, and indicate if any changes have been made. You may do so in any reasonable way, but not in a way that suggests you have the licensor's endorsement or receive it for your use. NonCommercial - You may not use the material for a commercial purpose. NoDerivatives - If you remix, transform, or build from the material, you cannot broadcast the modified material. There are no additional restrictions - You cannot apply legal terms or technological measures that legally restrict you from doing what the license allows.
- Authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional archive or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives, repositories, libraries, or their website), producing exciting exchanges and increasing the published work's citations.
- Request of withdrawal an article has to be done in writing by the author to the Editor, becoming effective after a written response from the Editor. For this purpose, the author or authors will send correspondence via e-mail: [email protected].
- The author will not receive financial compensation for the publication of his work.
- All Docentes 2.0 Journal publications are under the Open Journal System (OJS) platform at: https://ojs.docentes20.com/.
References
Agrawal, A., McHale, J., & Oettl, A. (2024). Artificial intelligence and scientific discovery: a model of prioritized search. Research Policy, 53(5), 104989. https://doi.org/10.1016/j.respol.2024.104989. DOI: https://doi.org/10.1016/j.respol.2024.104989
Brown, A. (2019). The impact of AI tools on the research process: Challenges and opportunities. Journal of Advanced Research, 28 (3), 215-227. https://doi.org/10.1016/j.jare.2019.02.013 DOI: https://doi.org/10.1016/j.jare.2019.02.013
Creswell, J. W. (2013). Qualitative Inquiry and Research Design: Choosing Among Five Approaches (3rd ed.). SAGE Publications.
Denzin, N. K., & Lincoln, Y. S. (2018). The Sage Handbook of Qualitative Research. Sage Publications.
Ekundayo, T., Khan, Z., & Nuzhat, S. (2024). Evaluating the Influence of Artificial Intelligence on Scholarly Research: A Study Focused on Academics. Hindawi Human Behavior and Emerging Technologies, 8713718, 13. https://doi.org/10.1155/2024/8713718. DOI: https://doi.org/10.1155/2024/8713718
Gadamer, H. G. (1997). Verdad y método. Ediciones Sígueme.
Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 18(1), 59-82. https://doi.org/10.1177/1525822X05279903 DOI: https://doi.org/10.1177/1525822X05279903
Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction. DOI: https://doi.org/10.1097/00006199-196807000-00014
Johnson, L. (2020). AI prompts as a driving force in hypothesis generation and data analysis. Advances in Data Science, 34 (4), 102-118. https://doi.org/10.1016/j.ads.2020.04.015
Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación. McGraw-Hill.
Kerlinger, F. (1986). Investigación del comportamiento: Métodos de investigación en ciencias sociales. McGraw-Hill.
Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. Jossey-Bass.
Morse, J. M. (1994). Designing funded qualitative research. In Denzin, N. K., & Lincoln, Y. S. (Eds.), Handbook of Qualitative Research (pp. 220-235). SAGE Publications.
Mujica-Sequera, R. M. (2022). Trascender Metodológico: Epistemología, Perspectivas Teóricas y Metodológicas de la Investigación Digital. Revista Docentes 2.0, 13(2), 26–36. https://doi.org/10.37843/rted.v13i2.289 DOI: https://doi.org/10.37843/rted.v13i2.289
Nilsson, N. J. (1991). Logic and artificial intelligence. Artificial Intelligence, 47(1–3), 31-56. https://doi.org/10.1016/0004-3702(91)90049-P. DOI: https://doi.org/10.1016/0004-3702(91)90049-P
Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health Services Research, 34(5), 1189–1208. https://n9.cl/ovgilb
Quivy, R., & Campenhoudt, L. (2006). Manual de investigación en ciencias sociales. McGraw-Hill.
Sandoval, C. (2002). Investigación cualitativa. McGraw-Hill.
Smith, J. (2021). Artificial Intelligence and the future of academic research: The role of AI prompts in accelerating discovery. Journal of Technology in Education, 17 (2), 45-60. https://doi.org/10.1016/j.jte.2021.01.005
Strauss, A., & Corbin, J. (2002). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage Publications.
Taylor, S., & Bogdan, R. (1986). Introducción a los métodos cualitativos de investigación. Paidós.