Los Prompts de IA: Herramientas para la Optimización de la Investigación Científica DOI: https://doi.org/10.37843/rted.v18i1.616

Contenido principal del artículo

Dra. Mujica-Sequera, R. M.
US
https://orcid.org/0000-0002-2602-5199

Resumen

In the last decade, artificial intelligence (AI) has emerged as a transformative agent in producing scientific knowledge, impacting multiple disciplines in a transversal way. The research's purpose is to analyze the impact of AI-based prompts in optimizing data processing and structuring. A qualitative approach was adopted, based on the interpretive paradigm and hermeneutic method, with a descriptive cross-sectional design. The sample representative consisted of 25 academic researchers. For information collection, semi-structured interviews were used, whose analysis was carried out through open coding and NVivo software, allowing the identification of emerging patterns and significant trends. The results show that AI increases efficiency in data management and favors the identification of new lines of scientific inquiry. In addition, a notable reduction in processing times and increased precision in analyzing large volumes of information were observed. Consequently, the tools are consolidated as notable resources for contemporary research, particularly in contexts where the management of massive data and the optimization of comparative methodologies are decisive. It is recommended that they be incorporated into all phases of the knowledge-generation process and that ethical and regulatory frameworks be established to regulate the use of AI in research, promoting its integration as a complementary tool and not as a substitute for human reasoning in the construction of scientific knowledge.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...

Detalles del artículo

Cómo citar
Mujica-Sequera, R. M. (2025). Los Prompts de IA: Herramientas para la Optimización de la Investigación Científica. Revista Docentes 2.0, 18(1), 267–277. https://doi.org/10.37843/rted.v18i1.616
Sección
Artículos

Citaciones del Artículo



Citas

Agrawal, A., McHale, J., & Oettl, A. (2024). Artificial intelligence and scientific discovery: a model of prioritized search. Research Policy, 53(5), 104989. https://doi.org/10.1016/j.respol.2024.104989. DOI: https://doi.org/10.1016/j.respol.2024.104989

Brown, A. (2019). The impact of AI tools on the research process: Challenges and opportunities. Journal of Advanced Research, 28 (3), 215-227. https://doi.org/10.1016/j.jare.2019.02.013 DOI: https://doi.org/10.1016/j.jare.2019.02.013

Creswell, J. W. (2013). Qualitative Inquiry and Research Design: Choosing Among Five Approaches (3rd ed.). SAGE Publications.

Denzin, N. K., & Lincoln, Y. S. (2018). The Sage Handbook of Qualitative Research. Sage Publications.

Ekundayo, T., Khan, Z., & Nuzhat, S. (2024). Evaluating the Influence of Artificial Intelligence on Scholarly Research: A Study Focused on Academics. Hindawi Human Behavior and Emerging Technologies, 8713718, 13. https://doi.org/10.1155/2024/8713718. DOI: https://doi.org/10.1155/2024/8713718

Gadamer, H. G. (1997). Verdad y método. Ediciones Sígueme.

Guest, G., Bunce, A., & Johnson, L. (2006). How many interviews are enough? An experiment with data saturation and variability. Field Methods, 18(1), 59-82. https://doi.org/10.1177/1525822X05279903 DOI: https://doi.org/10.1177/1525822X05279903

Glaser, B., & Strauss, A. (1967). The Discovery of Grounded Theory: Strategies for Qualitative Research. Aldine Transaction. DOI: https://doi.org/10.1097/00006199-196807000-00014

Johnson, L. (2020). AI prompts as a driving force in hypothesis generation and data analysis. Advances in Data Science, 34 (4), 102-118. https://doi.org/10.1016/j.ads.2020.04.015

Hernández, R., Fernández, C., & Baptista, P. (2014). Metodología de la investigación. McGraw-Hill.

Kerlinger, F. (1986). Investigación del comportamiento: Métodos de investigación en ciencias sociales. McGraw-Hill.

Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. Jossey-Bass.

Morse, J. M. (1994). Designing funded qualitative research. In Denzin, N. K., & Lincoln, Y. S. (Eds.), Handbook of Qualitative Research (pp. 220-235). SAGE Publications.

Mujica-Sequera, R. M. (2022). Trascender Metodológico: Epistemología, Perspectivas Teóricas y Metodológicas de la Investigación Digital. Revista Docentes 2.0, 13(2), 26–36. https://doi.org/10.37843/rted.v13i2.289 DOI: https://doi.org/10.37843/rted.v13i2.289

Nilsson, N. J. (1991). Logic and artificial intelligence. Artificial Intelligence, 47(1–3), 31-56. https://doi.org/10.1016/0004-3702(91)90049-P. DOI: https://doi.org/10.1016/0004-3702(91)90049-P

Patton, M. Q. (1999). Enhancing the quality and credibility of qualitative analysis. Health Services Research, 34(5), 1189–1208. https://n9.cl/ovgilb

Quivy, R., & Campenhoudt, L. (2006). Manual de investigación en ciencias sociales. McGraw-Hill.

Sandoval, C. (2002). Investigación cualitativa. McGraw-Hill.

Smith, J. (2021). Artificial Intelligence and the future of academic research: The role of AI prompts in accelerating discovery. Journal of Technology in Education, 17 (2), 45-60. https://doi.org/10.1016/j.jte.2021.01.005

Strauss, A., & Corbin, J. (2002). Basics of qualitative research: Techniques and procedures for developing grounded theory. Sage Publications.

Taylor, S., & Bogdan, R. (1986). Introducción a los métodos cualitativos de investigación. Paidós.

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones