Incidence of George Polya's Problem Solving Approach in the Variational Thinking’s Development DOI: https://doi.org/10.37843/rted.v17i1.447

Main Article Content

Galvis-Rivera, Y.
CO
https://orcid.org/0009-0006-6074-7116
Dr. González-Bautista, E. A.
CO
https://orcid.org/0000-0003-3126-3658

Abstract

Problem-solving has been a fundamental part of teaching mathematics, allowing it to satisfy the requirements when facing an everyday event. The objective of this study was to analyze the impact of George Pólya's approach to solving mathematical problems on the development of variational thinking, seen as one of the most recurrent problems in mathematics teaching. The application of a methodology under the naturalistic paradigm, Action Research method, qualitative approach, and interpretive type that allowed us to describe this difficulty in the sixth-grade students of the José Odel Lizarazo Villamaga educational institution, based on specific data taken from the plan proposed in the Pólya method. In this process, the phenomenon was approached from diagnosis and direct observation, the understanding and conception of problems through collaborative and cooperative work actions, and the implementation of mathematical resources and concepts to propose resolution options and reach a process of verification of the results. Once Pólya's proposal was executed, an evolution of variational thinking was evident in the key informants from its preoperational stage, where the initial difficulties in understanding the mathematical situations presented the weaknesses in the mathematical reading and writing process were recognized. Leading students to delve deeper into the inquiry, explore hypotheses, and propose solutions to the identified unknowns.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Galvis-Rivera, Y., & González-Bautista, E. A. (2024). Incidence of George Polya’s Problem Solving Approach in the Variational Thinking’s Development. Docentes 2.0 Journal, 17(1), 149–160. https://doi.org/10.37843/rted.v17i1.447
Section
Articles
Author Biographies

Galvis-Rivera, Y., Universidad de Pamplona

Yolima Galvis Rivera, born on January 5, 1982 in San José de Cúcuta, Norte de Santander. He began his higher education studies in the year 2000 at the University of Pamplona, in the Bachelor's program in Educational Mathematics and Informatics, his first steps as a teacher were carried out in the department of Arauca, having experience with urban, rural and ethno-education. in which it allowed him to work with children and young people during basic secondary and vocational media. In 2013, she was part of the Todos a Aprender Program of the Ministry of National Education and received the title of Specialist in Educational Information Technology and Telematics and in 2015 she was summoned to be part of the pilot group of the Todos a Aprender Program as Pioneers with the model Singapore mathematician. For 2017, she returns as a classroom teacher in mathematics seeking to implement new strategies in her classroom practice. By 2021 she begins her training as a Master in Education with the University of Pamplona.

Dr. González-Bautista, E. A., Universidad de Pamplona

Edgard Aurelinano Gonzalez Bautista, Superior Normalist (2002) Bachelor of Childhood Pedagogy (2006) Master of Music (2010) Specialist in Artistic Education Methodology (2010) and Master of Education (2015) from the University of Pamplona and Doctor of Education from the University Pedagogical the Liberator (2021).

Areas of performance, knowledge in terms of pedagogy, didactics, curriculum in the arts, investigative feeling towards the implementation of ICT in the teaching-learning processes of different artistic expressions.

Citaciones del Artículo



References

Acosta, L. L., Espinosa Montiel, G., & Cantoral, R. (2016). Pensamiento y Lenguaje Variacional y el Enfoque Por Competencias. https://n9.cl/gi4na

Barreriro, P., Casetta, I., Chacon, M., Gonzalez, V., Isla Suvialde, D., Leonial, P., . . . Rodriguez, M. (2019). Heurísticas en la resolución de problemas matemáticos. Ediciones UNGS.

Bejarano, M. A. (2016). La investigación Cualitativa. Innova Research.

Díaz Lozada, J. A., & Díaz Fuentes, R. (2018). Los Métodos de Resolución de Problemas y el Desarrollo del Pensamiento Matemático. https://doi.org/dx.doi.org/10.1590/1980-4415v32n60a03 DOI: https://doi.org/10.1590/1980-4415v32n60a03

Garcia Avella, G. A., Gaviria Tapia, A., Peralta Espinosa, A., & Romero Valor, L. A. (2017). Resolución de Problemas -Una Estrategia Para El Desarrollo Del Pensamiento Aleatorio En Los Estudiantes Del Grado Tercero De La Institución Educativa Francisco José De Caldas Del Municipio Paz De Ariporo -Casanare. Universidad de la Saller, 48.

Ministerio de Educación Nacional MEN. (2006). Estándares Básicos de Competencias en Lenguaje, Matemáticas, Ciencias y Ciudadanas. Ministerio de Educación Nacional.

Meneses Espinal, M. L. (2017). Método de Pólya como estrategia pedagógica para fortalecer la competencia resolución de problemas matemáticos con operaciones básicas en estudiantes de los grados tercero y cuarto del Colegio Municipal Aeropuerto. Tesis de maestría, Universidad Autónoma de Bucaramanga. http://hdl.handle.net/20.500.12749/2369

Mesa, P. A. (2009). Conceptualización de la razón de cambio en el marco de la Medellín. Universidad de Antioquia.

Polya, G. (1965). Cómo plantear y resolver problemas título original: ¿How To Solve It? Trillas.

Polya, G. (1989). Como Plantear y Resolver Problemas. Trillas.

Rios Peñaranda, C. J., & Navarrete Pita, Y. (2023). Estrategia didáctica para el Aprendizaje de las matemáticas en los estudiantes de tercero de bachillerato. Revista Estudios Social del Desarrollo de Cuba, 11(1). https://n9.cl/o5ejn

Sampieri, R. H. (2014). Metodología de la Investigación. McGraw Hill.

Santos Valencia, R. A., Chuc Can, F. A., Cadena Cupul, S. N., & Silva Cambranis, H. (2018). El método heurístico de Polya en un escenario de investigación. aplicación en un caso específico. Revista Electrónica Multidisciplinar de Investigacion y Docencia, 14.

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones