University Students’ Perception of the Use of Artificial Intelligence in their Education
DOI:
https://doi.org/10.37843/rted.v18i2.723
Main Article Content
Abstract
Artificial intelligence (AI) has established itself as one of the most transformative disciplines in recent decades, redefining key sectors of society, including education. This research aimed to explore the perceptions and feelings of students at the Technological University of Nezahualcóyotl (UTN) regarding the use of AI tools in their learning. The research was conducted within the positivist paradigm, employing the hypothetical-deductive method, a quantitative approach, and a non-experimental, descriptive, cross-sectional design. A Likert-scale instrument with closed-ended questions was administered to 2,282 students aged 17 to 30 years from different areas of knowledge at the university. The results revealed that regardless of whether students use AI, 3.86% of the population showed negative attitudes, compared to 61.26% with positive perceptions (p = 0.0002). The Division of Basic Sciences and Engineering had the lowest representation in positive feelings (p = 0.002). The perception of positive feelings by gender showed no significant differences; however, the age group most accepting of AI is 26-30 years. On the other hand, 34.88% of the population showed neutral feelings. These findings suggest the need to train students in the ethical and critical use of AI across various areas of study. This approach promotes its responsible integration as an everyday tool, enabling them to leverage technologies to address future professional challenges and consolidate its potential as a transformative educational resource.
Downloads
Metrics
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Those authors who have publications in our journal accept the following terms:
- When a work is accepted for publication, the author retains rights of reproduction, distribution of his/her article for exploitation in all countries of the world in the format provided by our magazine and any other magnetic medium, optical, and digital.
- Authors will retain their copyright and guarantee the journal the right first to publish their work, which will be simultaneously subject to the Creative Commons Acknowledgment License (Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)). That allows third parties to copy and redistribute the material in any medium or format, under the following conditions: Acknowledgment - You must properly acknowledge authorship, provide a link to the license, and indicate if any changes have been made. You may do so in any reasonable way, but not in a way that suggests you have the licensor's endorsement or receive it for your use. NonCommercial - You may not use the material for a commercial purpose. NoDerivatives - If you remix, transform, or build from the material, you cannot broadcast the modified material. There are no additional restrictions - You cannot apply legal terms or technological measures that legally restrict you from doing what the license allows.
- Authors may adopt other non-exclusive license agreements to distribute the published version of the work (e.g., deposit it in an institutional archive or publish it in a monographic volume) provided that the initial publication in this journal is indicated.
- Authors are allowed and recommended to disseminate their work through the Internet (e.g., in institutional telematic archives, repositories, libraries, or their website), producing exciting exchanges and increasing the published work's citations.
- Request of withdrawal an article has to be done in writing by the author to the Editor, becoming effective after a written response from the Editor. For this purpose, the author or authors will send correspondence via e-mail: [email protected].
- The author will not receive financial compensation for the publication of his work.
- All Docentes 2.0 Journal publications are under the Open Journal System (OJS) platform at: https://ojs.docentes20.com/.
References
Arias Gonzáles, J. L., & Covinos Gallardo, M. (2021). Diseño y metodología de la investigación (1ra ed.). Enfoques Consulting. https://n9.cl/blxng
Ahmad, S., Han, H., Alam, M., Rehmat, M., Irshad, M., Arraño, M., & Ariza, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, 1-14, https://doi.org/10.1057/s41599-023-01787-8 DOI: https://doi.org/10.1057/s41599-023-01842-4
Aiken, L. (2003). Confiabilidad y validez. Tests psicológicos y evaluación. Pearson Educación, 85-107. https://n9.cl/yfl7o
Alowais, S., Alghamdi, S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H., Al Yami, M., Harbi, S., Albekairy, A. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 23(1), 689. https://doi.org/10.1186/s12909-023-04698-z DOI: https://doi.org/10.1186/s12909-023-04698-z
Aragonés, E., Piñol, L., Caballero, A., Salvador, L., & López, G. (2017). A computerised clinical decision-support system for the management of depression in Primary Care. Atención Primaria, 49(6), 359–367. https://doi.org/10.1016/j.aprim.2016.09.011 DOI: https://doi.org/10.1016/j.aprim.2016.09.011
Arribas, M. (2004). Diseño y validación de Cuestionarios. Matronas Profesión, 5(17), 23-29. https://n9.cl/cn647
Bernal, C. (2010). Metodología de la investigación: Administración, economía, humanidades y ciencias sociales. Pearson Educación. https://n9.cl/jooqi
Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems, 28(2), 15-21. http://dx.doi.org/10.1109/MIS.2013.30 DOI: https://doi.org/10.1109/MIS.2013.30
Carguacundo, F., García, K., Urgiles, D., Chica, R., Suin, A., Andrade, M. (2024). Integración de la IA en el desarrollo del material educativo y didáctico para docentes del subnivel educación general básica media en la asignatura de ciencias naturales. Ciencia Latina Revista Científica Mutidisciplinar, 8(2), 1152-1163. https://doi.org/10.37811/cl_rcm.v8i2.10557 DOI: https://doi.org/10.37811/cl_rcm.v8i2.10557
Castagno, S., Khalifa, M. (2020). Perceptions of Artificial Intelligence Among Healthcare Staff: A Qualitative Survey Study. Front Artif Intell, 21(3), https://doi.org/10.3389/frai.2020.578983 DOI: https://doi.org/10.3389/frai.2020.578983
Chan, C., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8 DOI: https://doi.org/10.1186/s41239-023-00411-8
Chen, L., Chen, P., Lin, Z. (2020). Artificial intelligence in education: a review. IEEE Access, 8, 64–78. https://doi.org/10.1109/ACCESS.2020.2988510. DOI: https://doi.org/10.1109/ACCESS.2020.2988510
Cheng, Y. (2022). Improving Students' Academic Performance with AI and Semantic Technologies. arXiv. https://doi.org/10.48550/arXiv.2206.03213.
Clemente-Suárez, V. J. (2024). Innovación Educativa y Desafíos Actuales: Una Mirada a la Investigación Reciente. Cultura Educación Y Sociedad, 15(1), e03355727. https://n9.cl/yco6k
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555 DOI: https://doi.org/10.1007/BF02310555
Dzobo, K., Adotey, S., Thomford, N., Dzobo, T. (2019). Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine. OMICS, 24(5), 247-263. https://doi.org/10.1089/omi.2019.0038 DOI: https://doi.org/10.1089/omi.2019.0038
Foadi, N., & Varghese, J. (2022). Digital competence - A key competence for today’s and future physicians. Journal of European CME, 11(1), Article e2015200. https://doi.org/10.1080/21614083.2021.2015200 DOI: https://doi.org/10.1080/21614083.2021.2015200
Gao, J., Li, P., Chen, Z., Zhang, J. (2020). A survey on deep learning for multimodal data fusion. Neural Computation, 32(5), 829–864. https://doi.org/10.1162/neco_a_01273. DOI: https://doi.org/10.1162/neco_a_01273
García, J., & Bernal, A., López, J. (2013). Cálculo del tamaño de la muestra en investigación en educación médica. Investigación en Educación Médica, 2(8), 217-224. https://doi.org/10.1016/S2007-5057(13)72715-7 DOI: https://doi.org/10.1016/S2007-5057(13)72715-7
González, M., Barroso, O., & Gómez, M. (2022). Validación de instrumentos como garantía de la credibilidad en las investigaciones científicas. Revista Cubana de Medicina Militar, 48(2), 441-450. https://n9.cl/591bc
Hernández, R., & Mendoza, C. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta (6ta ed.). McGraw Hil
Huang, J., Saleh, S., & Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10(3), 206–216. https://doi.org/10.36941/ajis-2021-0077 DOI: https://doi.org/10.36941/ajis-2021-0077
Huerta-Presa, S. & Zavala-Ramírez, J. (2023). La Inteligencia Artificial y el Contexto de la Docencia en México. Revista Tecnológica-Educativa Docentes 2.0, 16(1), 49-56. https://doi.org/10.37843/rted.v16i1.336 DOI: https://doi.org/10.37843/rted.v16i1.336
Kirchherr, J., & Charles, K. (2018). Enhancing the sample diversity of snowball samples: Recommendations from a research project on anti-dam movements in Southeast Asia. PLoS ONE, 13(8), e0201710. https://doi.org/10.1371/journal.pone.0201710 DOI: https://doi.org/10.1371/journal.pone.0201710
Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22, 5–55. https://n9.cl/u40g3
Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016 DOI: https://doi.org/10.1007/978-3-031-02145-9_1
López, R, Avello, R, Palmero, D, Sánchez, S, & Quintana, M. (2019). Validación de instrumentos como garantía de la credibilidad en las investigaciones científicas. Revista Cubana de Medicina Militar, 48(1). https://n9.cl/591bc
Martínez-Márquez, M. (2025). Inteligencia Artificial y Educación. Revista Tecnológica-Educativa Docentes 2.0,18(1), 245-257. https://doi.org/10.37843/rted.v18i1.614 DOI: https://doi.org/10.37843/rted.v18i1.614
Musa, A., Owolabi, P., Rethabile, R., Olalekan, A., & Adebayo, M. (2024). Examining artificial intelligence literacy among pre-service teachers for future classrooms. Computers and Education Open, 6, 1-15, https://doi.org/10.1016/j.caeo.2024.100179 DOI: https://doi.org/10.1016/j.caeo.2024.100179
Naderifar, M., Goli, H., & Ghaljaie, F. (2017). Snowball sampling: A purposeful method of sampling in qualitative research. Strides in Development of Medical Education, 14(3), e67670. https://doi.org/10.5812/sdme.67670 DOI: https://doi.org/10.5812/sdme.67670
Niño, S., Castellanos, J. C., Perezchica, J., & Sepúlveda, J. (2025). Percepciones de estudiantes universitarios sobre los usos de inteligencia artificial en educación. Revista Fuentes, 27(1), 94–106. https://doi.org/10.12795/revistafuentes.2025.26356
Orji, F. A., & Vassileva, J. (2022). Machine learning approach for predicting students academic performance and study strategies based on their motivation. arXiv. https://doi.org/10.48550/arXiv.2210.08186
Popper, K. R. (2019). The logic of scientific discovery (Routledge Classics ed.). Routledge.
Statologos. (2022). Confiabilidad dividida por la mitad: definición, pasos. Statologos. https://n9.cl/l3fpn
Suh, W., & Ahn, S. (2022). Development and Validation of a Scale Measuring Student Attitudes Toward Artificial Intelligence. SAGE Open, 12(2), https://doi.org/10.1177/21582440221100463 DOI: https://doi.org/10.1177/21582440221100463
Tóala, M., Giler, J., & Gutiérrez, J. (2024). Las matemáticas y el uso de la inteligencia artificial (IA), Revista Unesum-ciencias, 8(3), 16-23, https://doi.org/10.47230/unesum-ciencias.v8.n3.2024.16-23 DOI: https://doi.org/10.47230/unesum-ciencias.v8.n3.2024.16-23
Ventura, J. (2017) ¿Validez de constructo o validez basada en el constructo?, Revista de Psiquiatría y Salud Mental, 10(4), 221. https://doi.org/10.1016/j.rpsm.2017.05.003 DOI: https://doi.org/10.1016/j.rpsm.2017.05.003
Wang, C. (2024). Exploring Students’ Generative AI-Assisted Writing Processes: Perceptions and Experiences from Native and Nonnative English Speakers. Technology, Knowledge and Learning, 30, 1825–1846. https://doi.org/10.1007/s10758-024-09744-3 DOI: https://doi.org/10.1007/s10758-024-09744-3
Zawacki, O., Mari?n, V., Bond, M., Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators?, Int J Educ Technol High Educ,16(1), https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0
