University Students’ Perception of the Use of Artificial Intelligence in their Education DOI: https://doi.org/10.37843/rted.v18i2.723

Main Article Content

Moreno-Montiel, C. H.
MX
https://orcid.org/0000-0001-7549-3274
Miranda-Pérez, M. E.
MX
https://orcid.org/0009-0006-7555-4085
Moreno-Montiel, M. N.
MX
https://orcid.org/0000-0002-8432-4672
Moreno-Montiel, B.
MX
https://orcid.org/0000-0002-6638-0451

Abstract

Artificial intelligence (AI) has established itself as one of the most transformative disciplines in recent decades, redefining key sectors of society, including education. This research aimed to explore the perceptions and feelings of students at the Technological University of Nezahualcóyotl (UTN) regarding the use of AI tools in their learning. The research was conducted within the positivist paradigm, employing the hypothetical-deductive method, a quantitative approach, and a non-experimental, descriptive, cross-sectional design. A Likert-scale instrument with closed-ended questions was administered to 2,282 students aged 17 to 30 years from different areas of knowledge at the university. The results revealed that regardless of whether students use AI, 3.86% of the population showed negative attitudes, compared to 61.26% with positive perceptions (p = 0.0002). The Division of Basic Sciences and Engineering had the lowest representation in positive feelings (p = 0.002). The perception of positive feelings by gender showed no significant differences; however, the age group most accepting of AI is 26-30 years. On the other hand, 34.88% of the population showed neutral feelings. These findings suggest the need to train students in the ethical and critical use of AI across various areas of study. This approach promotes its responsible integration as an everyday tool, enabling them to leverage technologies to address future professional challenges and consolidate its potential as a transformative educational resource.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Article Details

How to Cite
Moreno-Montiel, C. H., Miranda-Pérez, M. E. ., Moreno-Montiel, M. N., & Moreno-Montiel, B. (2025). University Students’ Perception of the Use of Artificial Intelligence in their Education. Docentes 2.0 Journal, 18(2), 324–336. https://doi.org/10.37843/rted.v18i2.723
Section
Articles
Author Biographies

Miranda-Pérez, M. E., University of Health

Profesor de tiempo completo en la universidad de la salud UNISA

Principales temas de investigación: Ciencias de la salud, y educación

Moreno-Montiel, M. N., National Polytechnic Institute

Profesora de la Esiqiue del Instituto politécnico nacional de tiempo completo en estudios de maestría y doctorado en ingeniería química

Moreno-Montiel, B., Metropolitan Autonomous University

Profesor titular de tiempo completo en la Universidad autónoma metropolitana con estudios de maestría en ciencias y tecnologías de la información

Citaciones del Artículo



References

Arias Gonzáles, J. L., & Covinos Gallardo, M. (2021). Diseño y metodología de la investigación (1ra ed.). Enfoques Consulting. https://n9.cl/blxng

Ahmad, S., Han, H., Alam, M., Rehmat, M., Irshad, M., Arraño, M., & Ariza, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, 1-14, https://doi.org/10.1057/s41599-023-01787-8 DOI: https://doi.org/10.1057/s41599-023-01842-4

Aiken, L. (2003). Confiabilidad y validez. Tests psicológicos y evaluación. Pearson Educación, 85-107. https://n9.cl/yfl7o

Alowais, S., Alghamdi, S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S., Aldairem, A., Alrashed, M., Bin Saleh, K., Badreldin, H., Al Yami, M., Harbi, S., Albekairy, A. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice. BMC Med Educ. 23(1), 689. https://doi.org/10.1186/s12909-023-04698-z DOI: https://doi.org/10.1186/s12909-023-04698-z

Aragonés, E., Piñol, L., Caballero, A., Salvador, L., & López, G. (2017). A computerised clinical decision-support system for the management of depression in Primary Care. Atención Primaria, 49(6), 359–367. https://doi.org/10.1016/j.aprim.2016.09.011 DOI: https://doi.org/10.1016/j.aprim.2016.09.011

Arribas, M. (2004). Diseño y validación de Cuestionarios. Matronas Profesión, 5(17), 23-29. https://n9.cl/cn647

Bernal, C. (2010). Metodología de la investigación: Administración, economía, humanidades y ciencias sociales. Pearson Educación. https://n9.cl/jooqi

Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New Avenues in Opinion Mining and Sentiment Analysis. IEEE Intelligent Systems, 28(2), 15-21. http://dx.doi.org/10.1109/MIS.2013.30 DOI: https://doi.org/10.1109/MIS.2013.30

Carguacundo, F., García, K., Urgiles, D., Chica, R., Suin, A., Andrade, M. (2024). Integración de la IA en el desarrollo del material educativo y didáctico para docentes del subnivel educación general básica media en la asignatura de ciencias naturales. Ciencia Latina Revista Científica Mutidisciplinar, 8(2), 1152-1163. https://doi.org/10.37811/cl_rcm.v8i2.10557 DOI: https://doi.org/10.37811/cl_rcm.v8i2.10557

Castagno, S., Khalifa, M. (2020). Perceptions of Artificial Intelligence Among Healthcare Staff: A Qualitative Survey Study. Front Artif Intell, 21(3), https://doi.org/10.3389/frai.2020.578983 DOI: https://doi.org/10.3389/frai.2020.578983

Chan, C., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8 DOI: https://doi.org/10.1186/s41239-023-00411-8

Chen, L., Chen, P., Lin, Z. (2020). Artificial intelligence in education: a review. IEEE Access, 8, 64–78. https://doi.org/10.1109/ACCESS.2020.2988510. DOI: https://doi.org/10.1109/ACCESS.2020.2988510

Cheng, Y. (2022). Improving Students' Academic Performance with AI and Semantic Technologies. arXiv. https://doi.org/10.48550/arXiv.2206.03213.

Clemente-Suárez, V. J. (2024). Innovación Educativa y Desafíos Actuales: Una Mirada a la Investigación Reciente. Cultura Educación Y Sociedad, 15(1), e03355727. https://n9.cl/yco6k

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334. https://doi.org/10.1007/BF02310555 DOI: https://doi.org/10.1007/BF02310555

Dzobo, K., Adotey, S., Thomford, N., Dzobo, T. (2019). Integrating Artificial and Human Intelligence: A Partnership for Responsible Innovation in Biomedical Engineering and Medicine. OMICS, 24(5), 247-263. https://doi.org/10.1089/omi.2019.0038 DOI: https://doi.org/10.1089/omi.2019.0038

Foadi, N., & Varghese, J. (2022). Digital competence - A key competence for today’s and future physicians. Journal of European CME, 11(1), Article e2015200. https://doi.org/10.1080/21614083.2021.2015200 DOI: https://doi.org/10.1080/21614083.2021.2015200

Gao, J., Li, P., Chen, Z., Zhang, J. (2020). A survey on deep learning for multimodal data fusion. Neural Computation, 32(5), 829–864. https://doi.org/10.1162/neco_a_01273. DOI: https://doi.org/10.1162/neco_a_01273

García, J., & Bernal, A., López, J. (2013). Cálculo del tamaño de la muestra en investigación en educación médica. Investigación en Educación Médica, 2(8), 217-224. https://doi.org/10.1016/S2007-5057(13)72715-7 DOI: https://doi.org/10.1016/S2007-5057(13)72715-7

González, M., Barroso, O., & Gómez, M. (2022). Validación de instrumentos como garantía de la credibilidad en las investigaciones científicas. Revista Cubana de Medicina Militar, 48(2), 441-450. https://n9.cl/591bc

Hernández, R., & Mendoza, C. (2018). Metodología de la investigación. Las rutas cuantitativa, cualitativa y mixta (6ta ed.). McGraw Hil

Huang, J., Saleh, S., & Liu, Y. (2021). A review on artificial intelligence in education. Academic Journal of Interdisciplinary Studies, 10(3), 206–216. https://doi.org/10.36941/ajis-2021-0077 DOI: https://doi.org/10.36941/ajis-2021-0077

Huerta-Presa, S. & Zavala-Ramírez, J. (2023). La Inteligencia Artificial y el Contexto de la Docencia en México. Revista Tecnológica-Educativa Docentes 2.0, 16(1), 49-56. https://doi.org/10.37843/rted.v16i1.336 DOI: https://doi.org/10.37843/rted.v16i1.336

Kirchherr, J., & Charles, K. (2018). Enhancing the sample diversity of snowball samples: Recommendations from a research project on anti-dam movements in Southeast Asia. PLoS ONE, 13(8), e0201710. https://doi.org/10.1371/journal.pone.0201710 DOI: https://doi.org/10.1371/journal.pone.0201710

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 22, 5–55. https://n9.cl/u40g3

Liu, B. (2012). Sentiment Analysis and Opinion Mining. Synthesis Lectures on Human Language Technologies, 5(1), 1-167. https://doi.org/10.2200/S00416ED1V01Y201204HLT016 DOI: https://doi.org/10.1007/978-3-031-02145-9_1

López, R, Avello, R, Palmero, D, Sánchez, S, & Quintana, M. (2019). Validación de instrumentos como garantía de la credibilidad en las investigaciones científicas. Revista Cubana de Medicina Militar, 48(1). https://n9.cl/591bc

Martínez-Márquez, M. (2025). Inteligencia Artificial y Educación. Revista Tecnológica-Educativa Docentes 2.0,18(1), 245-257. https://doi.org/10.37843/rted.v18i1.614 DOI: https://doi.org/10.37843/rted.v18i1.614

Musa, A., Owolabi, P., Rethabile, R., Olalekan, A., & Adebayo, M. (2024). Examining artificial intelligence literacy among pre-service teachers for future classrooms. Computers and Education Open, 6, 1-15, https://doi.org/10.1016/j.caeo.2024.100179 DOI: https://doi.org/10.1016/j.caeo.2024.100179

Naderifar, M., Goli, H., & Ghaljaie, F. (2017). Snowball sampling: A purposeful method of sampling in qualitative research. Strides in Development of Medical Education, 14(3), e67670. https://doi.org/10.5812/sdme.67670 DOI: https://doi.org/10.5812/sdme.67670

Niño, S., Castellanos, J. C., Perezchica, J., & Sepúlveda, J. (2025). Percepciones de estudiantes universitarios sobre los usos de inteligencia artificial en educación. Revista Fuentes, 27(1), 94–106. https://doi.org/10.12795/revistafuentes.2025.26356

Orji, F. A., & Vassileva, J. (2022). Machine learning approach for predicting students academic performance and study strategies based on their motivation. arXiv. https://doi.org/10.48550/arXiv.2210.08186

Popper, K. R. (2019). The logic of scientific discovery (Routledge Classics ed.). Routledge.

Statologos. (2022). Confiabilidad dividida por la mitad: definición, pasos. Statologos. https://n9.cl/l3fpn

Suh, W., & Ahn, S. (2022). Development and Validation of a Scale Measuring Student Attitudes Toward Artificial Intelligence. SAGE Open, 12(2), https://doi.org/10.1177/21582440221100463 DOI: https://doi.org/10.1177/21582440221100463

Tóala, M., Giler, J., & Gutiérrez, J. (2024). Las matemáticas y el uso de la inteligencia artificial (IA), Revista Unesum-ciencias, 8(3), 16-23, https://doi.org/10.47230/unesum-ciencias.v8.n3.2024.16-23 DOI: https://doi.org/10.47230/unesum-ciencias.v8.n3.2024.16-23

Ventura, J. (2017) ¿Validez de constructo o validez basada en el constructo?, Revista de Psiquiatría y Salud Mental, 10(4), 221. https://doi.org/10.1016/j.rpsm.2017.05.003 DOI: https://doi.org/10.1016/j.rpsm.2017.05.003

Wang, C. (2024). Exploring Students’ Generative AI-Assisted Writing Processes: Perceptions and Experiences from Native and Nonnative English Speakers. Technology, Knowledge and Learning, 30, 1825–1846. https://doi.org/10.1007/s10758-024-09744-3 DOI: https://doi.org/10.1007/s10758-024-09744-3

Zawacki, O., Mari?n, V., Bond, M., Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators?, Int J Educ Technol High Educ,16(1), https://doi.org/10.1186/s41239-019-0171-0 DOI: https://doi.org/10.1186/s41239-019-0171-0

Únete a nuestro canal de Telegram para recibir notificaciones de nuestras publicaciones

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.